数学
高校生

1番です。記述に問題ないですか?

180 00000 基本例題 113 絶対不等式 (1) すべての実数xに対して, 2次不等式x+(k+3)x-k> 0 が成り立つような 定数kの値の範囲を求めよ。 (2) 任意の実数xに対して,不等式 ax^²-2√3x+a+2≦0 が成り立つような定 数αの値の範囲を求めよ。 p.171 基本事項 ⑥ 「演習129 指針 2次式の定符号 2次式 ax2+bx+cについて D=62-4ac とする。 ·········!」 常に ax2+bx+c>0⇔a> 0, D < 0 常に ax'+bx+c<0⇔a<0, D<0 (1) x²の係数は 1 (正) であるから, D<0が条件。 常に ax2+bx+c≧0⇔a> 0, D≦0 常に ax²+bx+c≦0⇔a<0, D≦0 (2) 単に「不等式」 とあるから, α=0 (2次不等式で ない)の場合とa≠0)の場合に分ける。 [補足 ax²+bx+c>0 に対して, a=0 の場合も含め ると,次のようになる。 解答 (1) x²の係数が1で正であるから 常に不等式が成り立 つための必要十分条件は、 2次方程式 x2+(k+3)x-k=0 の判別式をDとすると D<0 D=(k+3)^-4・1・(-k) =k²+10k+9= (k+9)(k+1) であるから, D<0より (k+9)(+1) < 0 ゆえに -9<k<-1 + 常に ax+bx+c>0⇔a=b=0, c>0; または α > 0, D < 0 + [a>0, D<0] a=0のとき, 2次方程式 ax²-2√3x+α+2=0の判別 式をDとすると,常に不等式が成り立つための必要十 分条件は a<0 かつ D≦0 (*) 2=(-√3)a(a+2)=-a²-2a+3=-(a+3)(a-1) であるから, D≦0 より よって an-3, 1≦a 「すべての実数x」または「任意の実 数x」 に対して不等式が成り立つと は, その不等式の解が, すべての 数であるということ。 (1) の D<0 は, 下に凸の放物線が常 にx軸より上側にある条件と同じ。 (2) a=0のとき, 不等式は-2√3x+2≦0 となり、 例え (*) グラフがx軸に接する, また ばx=0のとき成り立たない。 はx軸より下側にある条件と同じ であるから, D< 0 ではなく D≦0と する。 (a+3)(a-1)≧0 a<0 との共通範囲を求めて すべての実数について、 2次不等式 ax+bx+c>0) が成り立つ ⇔2次関数y=ax²+bx+cのグラフが常にx軸より上側にある a> (下に凸) かつ D=6-4ac < 0 (x軸との共有点がない) nor [a < 0, D<0] a≤-3 Ne + [a> 0, D<0]
174113 2 ①1 y=x+(k+3/x-kとすると、 A NO. xa係数が1より下に点のグラフを描く。 £₁ √ x² - ( k + ³) x = F = 0 & ²2₁ apta #/B/= E D C T j r =k+bk+9-4k DATE Zắt D< 0 a ¢ £ x² + ( + + ³/2 - 70 # " X 1 2 2 a { " 2²/2 ₁⁰ $ !! D = ( K + ³ ) ² + 4 k = 1² + lok + 9 = ( k + 9 || K + J (k+q)( k + 1) < 0 したがっよ、-9ck<-1. 10

回答

まだ回答がありません。

疑問は解決しましたか?