学年

教科

質問の種類

数学 高校生

数Aの約数と倍数の問題です この問題の「つまり」の部分のあとの波線の部分 がどうしてそうなるのかが分かりません

例題 112 n! に含まれる素因数の個数 一解したとき、 次の問いに答えよ。 から30までの自然数の積 30!=30.29········ 2.1 をNとする。 Nを素 000 素因数2の個数を求めよ。 素因数の個数を求めよ。 p.426 基本事項 3 Nを計算すると、末尾には 0 が連続して何個並ぶか。 HART & THINKING □=1.2.3......(n-1)nの素因数々の個数 からまでのんの倍数 の倍数 の個数の合計 130には, 右の表に付いたの数だけ2が掛け合 わされる。つまり、 30 以下の自然数のうち、2の倍数, …………… の個数の合計が, 30!に含 2の倍数 23の倍数, まれる素因数2の個数になる。 ? 2 4 6 8 16 28 30 20000 0 00 22 0 0 0 なお、以下の自然数のうち, αの倍数の個数は, n をαで割った商として求められる。 23 O 0 24 □ 末尾に0が1個現れるのはどのようなときだろうか? 1から30までの自然数のうち 2の倍数の個数は, 30を2で割った商で 15個 22 の倍数の個数は 30を2で割った商で 2 の倍数の個数は, 30を2で割った商で 7個 22の倍数は素因数2を 3個 2個もつが、2の倍数と して1個 22の倍数と 2 の倍数の個数は 30を2で割った商で 1個 よって、 素因数2の個数は 15+7+3+1=26 (個) して1個数えればよい。 (1)と同様に5の倍数は6個, 5の倍数は1個あるから,それぞれ30÷5,30÷5" 素因数5の個数は 6+1=7 (個) (1)(2)から,Nを素因数分解したとき, 素因数2は26 個, 素因数5は7個ある。 2・5=10であるから,Nを計算すると、 その数の末尾には 0が連続して7個並ぶ。 の商。 素因数25を掛けると 末尾に0が1つ現れる。 素因数5の個数分だけ 0が並ぶ。 風料

解決済み 回答数: 1
数学 高校生

32(3)について質問です。 下線部、a+bがpの倍数ならばa^2+b^2もpの倍数と言えるのはなぜですか?

32 素数 を3以上の素数, a, b を自然数とする. ただし, 自然数nに対し, mnがp の倍数ならば, mまたはnはの倍数であることを用いてよい。 (1)a + bab がともにかの倍数であるとき, αもの倍数であ ることを示せ. (2)a+bとα+62がともにかの倍数であるとき, aもの倍数 であることを示せ. (3) α+b2a+bがともに の倍数であるとき,aとはともにゅの倍 (神戸大) 数であることを示せ. 精講 素数とは, 1とその数以外の正の約数をもたない2以上の整数 のことです. 具体的に素数は2,3,5,7,11, 13, 17, 19, ..のような整数です. なお, 1もその数 (つまり1) 以外に正の約数をもちませんが, 1は素数の仲間 に入れません. 2以上の整数は,素数を用いて, nk ~ Di71.p272 ・p373kkkは異なる素数で, nk は自然数 の形に表すことができます. これを素因数分解といいます。 たとえば,300 は 300=22.31.52 というように素因数分解することができます. しかし、素数』は素因数分解してもっとなるだ けです.つまり, 素数は,もうこれ以上素因数に 分解できない整数ということもできます。 解法のプロセス 整数a, b の積αbが素数の 倍数 2つの正整数a, bの積 abが素数の倍数で あるとき αがの倍数またはbがの倍数 だといえます. α または6がの倍数 (1)a+bがかの倍数であるから, a+b=pl (lは自然数) と表すことができる. 解答 ......① けがの倍数である.

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

高一の数Aです。 250がわかりません。 250の解説の5行目辺りの🟰1の部分にふたつ青線をひいているんですけどその1がどこから出てきたのか分からなくてその後が出来ません。 解説していただけるとありがたいです🙇‍♂️

138 REPEAT 数学A ムズ (2) 10=2.5 であるから,Nを素因数分解したと きの素因数5の個数を求める 53=125, 5'=625300 である 1から300までの自然数のうち 5の倍数の個数は 300 を5で割った商で 60 52の倍数の個数は, 300 52で割った商で 12 53の倍数の個数は, 300 を53で割った商で2 よって, Nを素因数分解したときの素因数5の 個数は 60+12+2=74 (個) (2) 5以上の自然数は、自然数を用いて 6k-1, 6k, 6k+1, 6k+2, 6k+3, 6k+4 のいずれかの形に表される。 このとき 6kは6の倍数であるから, 素数ではない。 6k+2=2(3k+1)は2の倍数であるから、素数 ではない。 6k+3=3(2k+1) は3の倍数であるから,素数 ではない。 6k+4=2(3k+2)は2の倍数であるから,素数 ではない。 また、素因数2の個数は明らかに素因数5の個 数より多い。 よって、 5以上の素数は6k-1 または 6k+1の 形に表される。 よって, 求める0の個数は, 素因数5の個数に 等しく 74個 249 2310 を素因数分解すると したがって, 5以上の素数は6の倍数から1引い た数か 6の倍数に1足した数である。 51=173+0 2)2310 2310=2・3・5・7・11 2,357 11は素数であるから 3)1155 252 (1) 408-119.3+51 08 119=51-2+17 n=2.3.5.7, 2-3-5-11, 5) 385 2-3 7-11, 2-5-7-11, 7) 77 よって、 最大公約数は 17 3-5-7-11 11 2310 3 2 3 のとき, ・は順に素数 11, 7, 5, 3, 2 にな n 17) 51119) 408 る。 したがって, 求める自然数nは 5個 250 n2-14n+40-(n-4Xn-10) または n2-14n+40= (4-n 10-n) n-4>n-10,4-n<10-であるから, n2-14n+40 が素数であるとき n101 または 4-n=1 n-10=1からn=11, 4-n=1 から n=3 (2) 568-213-2+142 213142.1+71 142=712+0 51 102 357 20 17 51 最大公約数 251 n=11 のとき n2-14n+40=7.1=7 (素数) よって, 最大公約数は 71 n=3のとき n2-14n+40=1.7=7 (素数) よって, 求める自然数nは n=3,11 ■指針■■■ (1) () () であげた素数について、 a=2, 3, 4, に対してa の倍数との 差がどのようになるかを調べてみる。 (1) (ア) 5以上の素数は,小さい方から順に 608-171-3+95 171 = 95.1+76 95=76-1+19 76-19-4+0 よって、最大公約数は 4 1 1976) 95 76 76 0 19 1057=481-2+95 481=95-5+6 95-6-15+5 6=5-1+1 5=1.5+0 よって、 最大公約数は、 51 15 1 5695) 5 90 0-1 55-0 5 6) 1463-594-2+275 594-275-2+44 275=44-6+11 44 11-4+0 よって、 最大公約数は 4 11) 44275 6 44 264 5 257 0 11 針 253 2 1 2 71 142 213568 \142 142 426 O 71 142 (3) 322 155 2+12 155=12.12+11 2辺の長さを (1) は 17 250nは自然数とする。 n2-14n+40 が素数となるようなnをすべて求めよ。 2-14240= または (4-8114-10 n²-ko (Eh) (10-h) m-47-101 ーースであるから、 ええけん。FOが素数であるとき 2-10-1 または下=1 えこい ホーム 1からそころ m-10=1から このとき 2*- [Fat 40 = 1.127 (82) ぇーけん+=1.7こり(数) よって求める自民は 2=3 1 にも長方形へ 11 まで 251 次の問いに答えよ。 1-8-8- (1) 2辺の長さが 大すると、長方形の2 この拡大した長方形にす とができる, 最も大きい (1) (ア) 5以上の素数を小さい方から順に10個あげよ。 5,7,11,13,17,19,23,24 5, 7, 11, 13, 17, 19, 23, 29,31,37 (イ) (ア) であげた素数について、 12=11.I+1 11=111+0 5, 11, 17, 23, 296の倍数から1引いた数 である。 11と17の最大公約数で よって, 最大公約数は1 11と17の最 11 1 12 7, 13, 19, 31, 37 は6の倍数に1足した数で ある。 2 1) 11 12 155 322 また、47以上の自然数にすると、4の倍数 から1引いた数も4の 11 11 1足した数も、 0 素数5を表せない。ゆえ、口にあてはまる 自然数のうち、最大の 6 31 (イ)(ア)であげた素数から予想できることについて,下の文章の口にあ 最大のものを求めよ。ただし口には同じ自然数が入るものとする。 5以上の素数は、の倍数から1引いた数か、口の倍数に1足し

解決済み 回答数: 1