学年

教科

質問の種類

数学 高校生

(2)のよって~の計画方法を分かりやすく教えてください。

119 合同式の利用 (2) 0 合同式を用いて,次の問いに答えよ。 例題 (1) 13 MH を9で割った余りを求めよ。 nが自然数のとき, 26F-5+3'" は11で割り切れることを示せ。 (2) CHART SOLUTION αをm²で割った余り まずは a²,a, で合同式を考える (1) 134 (mod 9) であるから, 48 を9で割った余りを考えればよい。 そして、 4=1 (mod 9) または A-1 (mod 9) となるkを見つけることが できれば,累乗はすぐに計算できる。 (2) 232-1 (mod !!) ではあるが,指数に文字が入っているため、うま く利用できない。 (1) 134 (mod 9) であり 指数がnの1次式になっている項の和+4+6++.....については,まず d", b,..... の合同式を考えるとよい。 4167 (mod 9) よって 14² 47.1 28 1 (mod 9) 13100 4100 (4³) 33.4 13.44 (mod 9) よって ゆえに 求める余りは 4 (2) 2649 (mod 11) 39 (mod 11) であり 26-5-20-11+1 (29) 2 00000 ((2) 類 学習院大) 32"=(3²)" 20-6+32" (2) "1.2+ (32)" 9"-¹.2+9" =9"-¹(2+9) =9"~1.110 (mod 11) 418, 419 PRACTICE 1199 421 ← 132, 13, ·····を考えて もよいが. の方が計算しやすい。 99⁰-1.9 -1≧0であるから 97-1は整数。 ゆえに,297-5 +327は11の倍数である。 参考 (2) は、数学Bで学習する 「数学的帰納法」という証明法を用いて証明することも できる。

回答募集中 回答数: 0
数学 高校生

(2)の問題、、、実数の余りの計算に複素数を持ち込むことに違和感しかないです。 どう理解すれば良いのでしょう

2以上の自然数とするとき,x"-1 を (x-1)2で割ったときの余りを求 めよ。 [学習院大 ] 基本 55,56 ((2) 3x+2x7 +1をx2 +1で割ったときの余りを求めよ。 実際に割り算して余りを求めるのは非現実的である。p.94~96 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意 B = 0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いて x=1 を代入することは思いつくが,それだけでは足りな い。そこで,次の恒等式を利用する。 ただしnは2以上の自然数, α=1,6°=1 a"_b"=(a-b)(a-1+a²-26+α-362+......+ab+b^-1) (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 24 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りを 別解 (1) 二項定理の利用。 ax + b とすると,次の等式が成り立つ。 解答 x"-1={(x-1)+1}"-1 x"_1=(x-1)'Q(x)+ax+b =Cn(x-1)"+..+nCz(x-1)2 +nCi(x-1)+1-1 両辺にx=1 を代入すると 0=a+b すなわち b = -α ① に代入して x"-1=(x-1)'Q(x)+ax-a =(x-1){(x-1)Q(x)+α} n個 a=n よって b = -αであるから b=-n ゆえに, 求める余りは nx-n (23x100+ 2x97+1 を x2 +1で割ったときの商を Q(x), 余 りをax+b(a,b は実数) とすると,次の等式が成り立 つ。 3x100+ 2x97+1=(x2+1)Q(x)+ax+b 両辺にx=i を代入すると 3i100+297+1=ai+b i100=(i2)50=(-1)=1, i=(i²) i=(-1) i=i である tnx-n ゆえに,余りは nx-n ここで, x-1=(x-1)(x"-1+x"-2+...... +1) であるか また, (x-α)2 の割り算は ら xn-1+x"=2+…………+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 微分法(第6章)を利用する のも有効である(p.323 重 要例題 201 など)。 微分法 を学習する時期になったら, ぜひ参照してほしい。 1+1+…….+1=a から すなわち a b は実数であるから したがって 求める余りは 2x+4 3・1+2i+1=ai+b 4+2i=b+ai =(x-1)2 a=2, b=4 x{(x-1)^2+..+nC2} x=-iは結果的に代入 しなくてもよい。 実数係数の多項式の割り 算であるから、余りの係 数も当然実数である。 (1) n2以上の自然数とするとき、x" を (x-2)2で割ったときの全を求めて 2章 10剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

なぜ自然数じゃないといけないですか? 分数型の累乗も存在しますよね?教えてください

ba, as b の公 0 90 等比数列と対数 重要 例題 0000 数列{an} は初項1,公比5の等比数列である。 a1+a2+...... +an ≧ 102 を 満たす最小の n を求めよ。 ただし, 10g102= 0.3010 とする。 [ 学習院大 ] p.467 基本事項 3, 基本 86 CHARTO OLUTION 等比数列の和 対数の利用・・・・・! 不等式の左辺を計算して整理すると5"410100+1 このままでは,nの値を求めるのは難しい。 そこで, 対数 (数学ⅡI の内容) を利用 するとよい。 なお,5≧4・10100 +1 のままでは,両辺の常用対数をとっても右辺の計算がうま くできない。 そこで, nが自然数のとき 5"≧4・10100 +1 と 5>4・1010 は同値で あるから, 5">4・101 の両辺の常用対数をとって計算するとよい。 解答 a+a+......+an= 1-(5"-1)=(5-1) よって与えられた不等式から 整理して 5"≧4・10100 +1 ゆえに, 5">4・10100 を満たす最小の自然数nを求めればよい。 両辺の常用対数をとると nlog10510g104 +100 n (1-10g102) >210g10 2+100 10g10 2=0.3010 であるから Pea 0.6990n>100.6020 (5-1) ²10¹00 よって 100.6020 n> -=143.9...... 0.6990 ゆえに, n ≧144 のとき 5">4・10100 が成り立つ。 したがって、求める最小のnの値は n=144 009 ← Sn= a(r"-1) r-1 ◆右辺を1少なくしても, 式の形からnに影響を 08 及ぼさない。 10g105"=n10g105, log104.10100 log104+log10 10100 = 210g 10 2+100 10g105=10g10- 475 10 2 =10g1010-10g102 =1-log102 ■ 5” は単調に増加する。 METOA *88 ARE (14) 3章 11 等比数列

回答募集中 回答数: 0
数学 高校生

5・14の(2)の解説でp<2/3とp=2/3で場合分けをするのは理解できるのですが、p<2/3でq=-1/2p^3+p^2になることと、p=2/3でq=8/27ではなくq>8/27になるのかがわかりません。 回答よろしくお願いいたします。

と,C上の点P(t, 5t2+2t+1) がある. このとき, Pにおける C の接線をLとし, LC2 とで囲まれ る部分の面積をSとする. (1) Lの方程式を求めよ. (2) Sを求めよ. (3) P が C 全体を動くとき, Sの最小値と最小 値を与えるtの値を求めよ. ( 22 学習院大・法,国際社会) 5・14 aを定数とする. 関数 f(x)=x3-(3a+1)x2+4ax について,次の問に答えよ. (1) 関数f(x) の増減と極値を調べよ。 また, 関数 f(x) が極大値をもつようなaの値の範囲を求めよ. (2) (1)で求めた範囲のαについて, 関数f(x) が 極大値をとるxの値をとし, その極大値を g と する. a が (1)で求めた範囲を変化するとき, xy 平面上での点 (p, g) の軌跡 C を求め,図示せよ. 1 (3) (2)で図示した軌跡 Cと直線y=- で囲まれた図形の面積を求めよ. (22 宮城教大) -x+ 5・15t を実数とする. 直線x=t に関して曲線 C1:y=x-2x²-4 と対称な曲線を C2 とする. (1) CC2が共有点をちょうど3個持つときの の範囲を求めよ. (2) tが (1) の範囲を動くとき, C1 と C2 で囲まれ た2つの部分の面積の和をS(t) とする. S(t) の 最大値を求めよ. ( 22 一橋大 (後) ・経) 5・16 xy平面上の曲線 YA IC Cをy=x2(x-1)(x+2) とする. (1) Cに2点で下から L XC

回答募集中 回答数: 0