学年

教科

質問の種類

数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

波線部のt=の式のところがなぜそうなるのかがわかりません。√2xはどこからきたのでしょうか? また、右図の意味もいまいちよくわかりません。全体の長さは√2xではなく2√2なのではないのですか?

00000 重要 例題 280 直線y=xの周りの回転体の体積 不等式 x-x≦y≦x で表される座標平面上の領域を,直線y=xの周りに1回転 A して得られる回転体の体積Vを求めよ。 [学習院大 ] 基本 272 指針▷ これまではx軸またはy軸の周りの回転体の体積を扱ってきたが,この例題では直線 y=xの周りの回転体である。 したがって,回転体の断面積や積分変数は回転軸(直線y=x) に対応して考えることに 体積 断面積をつかむ の方針 なる。 そこで,解答の上側の図のように放物線上の点Pから直線y=xに垂線PQを引いて、 PQ=h, 0Q=t とし,積分変数をt(0≦t≦2√2) とした定積分を考える。 このとき, 断面は線分PQ を半径とする円になるから, その面積は πh² 解答 題意の領域は、右図の赤く塗った部分 である。 放物線y=x²-x 上の点 P(x, x2-x) (0≦x≦2) から直線y=x に垂線PQを引き, PQ=h, OQ=t (0≦t≦2√2) とする。 このとき h=x-(x2-x)_2x-x2 √2 t=√2x-h=√2x-²x=2x² = √2 ゆえに dt=√2xdx tとxの対応は表のようになるから 2 コ V=x√²h²dt =T √2 2 (2x-x2) 2 √2xdx π = √2 S² (4x² - 4x² + x³) dx π π 6 12 *√/₂2 [× ¹ — ²/² x ² + x ² ] ² = √2-16-8√/2 15 15 π YA y=x2-xy=x 2 2√2 √2 x O he 45° 全体の長さ 1 2√2LF? P(x, x2-x) 2 t x 0 y=x x (x,x) 1 hx-(x²-x) P(x,x2-x) 02√2 2 (*) hは,直線y=xとx軸 の正の向きとのなす角が45° であることに注目して求めた。 なお,以下の点と直線の距離 の公式を利用してもよい。 点 (xo,yo) から直線 lax+by+c=0 に引いた垂線 の長さは ax+by+cl √a²+b² 上から2番目の図参照。 htはxの式になるから, 体積Vの計算(tでの定積 分) を, 置換積分法により xでの定積分にもち込む。 (検討) 放物線y=x2-xについて, y'=2x-1からx=0のとき y'=-1 よって、原点における接線は, 直線y=x と垂直。 1-03- 1S

回答募集中 回答数: 0
数学 高校生

(2)のよって~の計画方法を分かりやすく教えてください。

119 合同式の利用 (2) 0 合同式を用いて,次の問いに答えよ。 例題 (1) 13 MH を9で割った余りを求めよ。 nが自然数のとき, 26F-5+3'" は11で割り切れることを示せ。 (2) CHART SOLUTION αをm²で割った余り まずは a²,a, で合同式を考える (1) 134 (mod 9) であるから, 48 を9で割った余りを考えればよい。 そして、 4=1 (mod 9) または A-1 (mod 9) となるkを見つけることが できれば,累乗はすぐに計算できる。 (2) 232-1 (mod !!) ではあるが,指数に文字が入っているため、うま く利用できない。 (1) 134 (mod 9) であり 指数がnの1次式になっている項の和+4+6++.....については,まず d", b,..... の合同式を考えるとよい。 4167 (mod 9) よって 14² 47.1 28 1 (mod 9) 13100 4100 (4³) 33.4 13.44 (mod 9) よって ゆえに 求める余りは 4 (2) 2649 (mod 11) 39 (mod 11) であり 26-5-20-11+1 (29) 2 00000 ((2) 類 学習院大) 32"=(3²)" 20-6+32" (2) "1.2+ (32)" 9"-¹.2+9" =9"-¹(2+9) =9"~1.110 (mod 11) 418, 419 PRACTICE 1199 421 ← 132, 13, ·····を考えて もよいが. の方が計算しやすい。 99⁰-1.9 -1≧0であるから 97-1は整数。 ゆえに,297-5 +327は11の倍数である。 参考 (2) は、数学Bで学習する 「数学的帰納法」という証明法を用いて証明することも できる。

回答募集中 回答数: 0
数学 高校生

(2)の問題、、、実数の余りの計算に複素数を持ち込むことに違和感しかないです。 どう理解すれば良いのでしょう

2以上の自然数とするとき,x"-1 を (x-1)2で割ったときの余りを求 めよ。 [学習院大 ] 基本 55,56 ((2) 3x+2x7 +1をx2 +1で割ったときの余りを求めよ。 実際に割り算して余りを求めるのは非現実的である。p.94~96 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意 B = 0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いて x=1 を代入することは思いつくが,それだけでは足りな い。そこで,次の恒等式を利用する。 ただしnは2以上の自然数, α=1,6°=1 a"_b"=(a-b)(a-1+a²-26+α-362+......+ab+b^-1) (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 24 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りを 別解 (1) 二項定理の利用。 ax + b とすると,次の等式が成り立つ。 解答 x"-1={(x-1)+1}"-1 x"_1=(x-1)'Q(x)+ax+b =Cn(x-1)"+..+nCz(x-1)2 +nCi(x-1)+1-1 両辺にx=1 を代入すると 0=a+b すなわち b = -α ① に代入して x"-1=(x-1)'Q(x)+ax-a =(x-1){(x-1)Q(x)+α} n個 a=n よって b = -αであるから b=-n ゆえに, 求める余りは nx-n (23x100+ 2x97+1 を x2 +1で割ったときの商を Q(x), 余 りをax+b(a,b は実数) とすると,次の等式が成り立 つ。 3x100+ 2x97+1=(x2+1)Q(x)+ax+b 両辺にx=i を代入すると 3i100+297+1=ai+b i100=(i2)50=(-1)=1, i=(i²) i=(-1) i=i である tnx-n ゆえに,余りは nx-n ここで, x-1=(x-1)(x"-1+x"-2+...... +1) であるか また, (x-α)2 の割り算は ら xn-1+x"=2+…………+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 微分法(第6章)を利用する のも有効である(p.323 重 要例題 201 など)。 微分法 を学習する時期になったら, ぜひ参照してほしい。 1+1+…….+1=a から すなわち a b は実数であるから したがって 求める余りは 2x+4 3・1+2i+1=ai+b 4+2i=b+ai =(x-1)2 a=2, b=4 x{(x-1)^2+..+nC2} x=-iは結果的に代入 しなくてもよい。 実数係数の多項式の割り 算であるから、余りの係 数も当然実数である。 (1) n2以上の自然数とするとき、x" を (x-2)2で割ったときの全を求めて 2章 10剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

(2)最後の計算で b🟰➖A🟰➖Nが成り立つ理由が分からないので教えて欲しいです

92 0000 重要 例題 58 剰余の定理の利用 (3) (1) f(x)=x-ax+b が (x-1)2 で割り切れるとき,定数a, 3の値を求 12 めよ。 (2) n を2以上の整数とするとき,x"-1 を (x-1)2で割ったときの余り [ 学習院大 ] を求めよ。 n=1 5²5² (K-1) *2*1 TO 811/464][ きらき CHART O OLUTION 1=2 + A² A 割り算の問題 基本公式 A=BQ+R を利用 1 次数に注目 ②余りには剰余の定理 (1) (x-1)2で割り切れるf(x)=(x-1)2Q ⇒ f(x)がx-1で割り切れ、更にその商がx-1で割り切れる。 (2) 次の恒等式を利用する。 ただし, nは自然数とし,α=1, 6°= 1 である。 √5 = (-) (²) a"-b"=(a - b)(a + a²-²b + a²-³b²+...+ab² −²+b″-¹) 4²3 Xa² p² cat Pak B 解答 (1) f(x)はx-1 で割り切れるから よって 1-a+b=0 st』ゆえに したがって f(x)=x³-ax+a-1-'z—'z67(2) g(x)=x2+x+1-α とすると =(x-1)(x²+x+1=a) ---- ƒ(1)=0 ① b=a-1…... ゆえに a=3 両辺にx=1 を代入すると 0=a+b よって よって 3-a=0 これを①に代入して b=2+²+ (S-1)-8 (2)12次式(x-1)2で割ったときの商をQ(x), 余り をax+b とすると,次の等式が成り立つ。 x-1=(x-1)2Q(x)+ax+b b=-a ゆえに x-1=(x-1)²Q(x)+ ax=a 1=(x-1){(x-1)Q(x)+α} | 10 -a x-1=(x-1)(x-1+x+・・・・・・ +x+1)。 であるから LON √x ²²-² + x ²²-² +² + x + 1 = x= 1) Q(x) + a 両辺にx=1 を代入すると 1+1+ ...... +1+1=a ゆえに b=-a=-n | | 11-α+1 g(1)=0355, g(x) x-l で割り切れる。 a-11 1 1 -α+1 nx-n 0 59PXを固数分解せ (3) 6x²+x²+2x+ 50 Px)=x²-4x³+10x² 割り算の基本公式 A=BQ+R B 520 xの多項式F(x) 3-1であり、 ← (x−1)²Q(x)+a(x−1) ■1=x であるから, 左辺 の項数はx からま での個 a=n よって したがって 求める余りは PRACTICE・・・・ 58 ④ h=α = -f (1)a,bは定数で, xについての整式x+ax+6は(x+1)^2で割り切れるとする。 このとき, a b の値を求めよ。 (2) 2以上の自然数とする。 x" +ax+6が(x-1)2で割り切れるとき, 6の値を求めよ。 〔早稲田大] 定数 ( (x-1)(x-2)- 53 駄式 P(x) を x+3である P(2) 4 1

未解決 回答数: 1
数学 高校生

408番です。(1)の増減表がこうなる理由が分かりません。

⇒ Challenge 406 a,bを実数として, について 次式f(x)=3x-4x-6ax2+12ax+b 考える。 f(x)=0 が実数の重解を2つもつときのα, b の値を求めよ。また,そ のときの2つの重解を求めよ。 ただし, a>0, a≠1 とする。 〔類 05 立命館大〕 -1907 407 放物線 C:y=x2 上の点Pに対し,PにおけるCの法線をL(P) とする。 (LP) は,Pを通り,PでのCの接線に直交する直線である。) 点Q(a, 1) に対し, L (P) がQを通るようなC上の点Pがちょうど3個あるため のαの範囲を求めよ。 [13 学習院大〕 Training 403 *408 x≧0 のとき不等式2x°≧a(x 2-3) が成り立つような実数aのとりうる 値の範囲を求めよ。 [12 中部大〕 Training 405 〒409 (1) 曲線 y=x-x2の接線で,点(20) を通るものをすべて求めよ。 (2) pを定数とする。xの3次方程式ペーxp(x-2)の異なる実数解の個 数を求めよ。 〔類 11 名古屋大〕 + Plus One 4100≦02 とする。 (1) sin-√3cOsO≧-1 を満たす0の値の範囲を求めよ。 (2)(1) で求めた範囲の日について, 4cos'0+3√3 cos20 の最大値と最小値を求 めよ。 また、そのときのの値を求めよ。 (3) は実数の定数とする。 4cos'+3√3 cos'o=kかつ sino-√3cos-1を満たす0が,ちょうど3個存在するような,の値 の範囲を求めよ。 [ 12 法政大 〕 35 微分法の応用 73

未解決 回答数: 1