学年

教科

質問の種類

数学 高校生

147.1 この記述に問題点はありますか? 1つ自分でも気づいた問題点はtan(β-α)でθ=α-βではなくθ=β-αにした理由を書いていないことなのですが、文で「求めるθはθ=β-αより、tanθ= tan(β-α)=...」とするのは説明が不十分ですか?

に 基本例題 147 2直線のなす角 o 800 (1) 2直線√3x-2y+2=0, 3,3x+y-1=0 のなす鋭角 0 を求めよ。 π 09 (2) 直線y=2x-1と 4 指針▷ p.227 基本事項 ② NIKO 2直線のなす角まず,各直線とx軸のなす角に注目 99 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tan 0 (0≤0<, 0+ T の角をなす直線の傾きを求めよ。 (1) 2直線とx軸の正の向きとのなす角をα, βとすると, 2直線 のなす鋭角は,α <B なら β-α または - ( β-α) 解答 1 2直線の方程式を変形すると Jacoss And √3 y= -x+1, y=-3√3x+1 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, β と すると, 求める鋭角0は0=β-α √3 2 tan a= tan0=tan(β−a)= 半角の公 練習 147 tanβ=-3√3で, tan B-tan a 1 + tan βtana で表される。 ←図から判断。 5302 この問題では, tana, tan βの値から具体的な角が得られないので, tan(β-α) の計算に 4.00.85 加法定理を利用する。 倍角の <</であるから 0=231230 (2) 直線y=2x-1とx軸の正の向き とのなす角をとするとtana=2 to tanq±tan- tan(+4)= sin 32+1 (2 1+2・1 17tanatan匹 4 13. y=-2x+1 2tan π& Sn 4 (複号同順) -(-3√3-√3)={1+(-3√3). √3-√3 = 2 2 3/31回 piet=& aletanye0012001 (1 shdi at B ー であるから 求める直線の傾きは3, =3sing- 1 O -1- TA 1 3 0 yy=2x π TO π 4 x 91.0. /y=2x-1 n n FO m 0 (S) /y=mx+n ( 2 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 傾きが mi, m2 の2直線のな す鋭角を0とすると tan 0= mm2 1+m1m2 [別解] 2直線は垂直でないから tan 0 √√3-(-3√3) 1+√3+(-3√3) 2 7√3 1=13 x-1|-2/3 +2=√3 x <<から4 0= 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で,直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 (1) 2直線x+3y-6=0,x-2y+2=0 のなす鋭角0 を求めよ。 8A1- (2) 直線y=-x+1と π の角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 3 231 4章 24 加法定理の

解決済み 回答数: 2
数学 高校生

なんで青線の①の式から辺BCが2:3に内分すると分かったのか謎だし、線分ADを5:6に内分すると言うのもどう考えたら出るのか全くわからないので手がつきません😭😭😭😭🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️教えてください🙏

基本例題 22 分点に関するベクトルの等式と三角形の面積比 ①①①①① △ABCの内部に点Pがあり, 6PÂ +3P+2PC = 0 を満たしている。 (1) 点Pはどのような位置にあるか。 (2) APAB, APBC, APCA の面積の比を求めよ。 解答 (1) 等式を変形すると 指針▷ (1) αPA+6PB+cPC = の問題点Aに関する位置ベクトルAP, AB, AC の式に 直し、AP=k nAB+mAC m+n の形を導く。 A (2) 三角形の面積比 等高な底辺の比②2 等底なら高さの比を利用して,各 三角形と△ABCとの面積比を求める。その際, (1) の結果も利用。 よって -6AP+3(AB-AP) +2(AC-AP)=0 11AP=3AB+2AC ① ゆえに ゆえに AP= 5,3AB+2AC 5 辺BCを2:3に内分する点をDと すると AP-AD したがって, 辺BCを2:3に内分 する点をDとすると, 点Pは線分 AD を 56 に内分する位 置にある。 (2) △ABCの面積をSとすると △PAB= 51.4 △ABD= 6 △PBC= …AABC= 11 APCA-A -.AACD= B 6 53 11 5 D n △ABC=11S •AABC=ns APAB: APBC: APCA = S: S: S p.413 基本事項 [②2] [類 名古屋市大] 基本58 C =2:6:3 差の形に分割。 AB, AC の数に注目す ると,線分 BC の内分点の 3AB+2AC 2+3 位置ベクトル の形に変形することを思い つく。 【等高S,S, S,S,- [参考] 一般に, △ABCと点Pに対し, IPA+mPB+nPC=0 を満たす正の数m,nが存在す るとき,次のことが成り立つ。 (1) 点Pは△ABCの内部にある。 (2) APBC: APCA: APAB=1:m:n

回答募集中 回答数: 0
数学 高校生

107. n>0,m>0よりm-n>0という書き方は問題ないですか? また、m-n≧1というのは m,nはともに自然数だからm+n,m-nは自然数。 自然数×自然数=40(自然数)になるとき m-nは1以上でないと 自然数×自然数は自然数にならないからですか? (わかりやす... 続きを読む

107 √2次式の値が自然数となる条件 n²+40 が自然数となるような自然数n をすべて求めよ。 3 重要 例題 指針> √n²+40= よって ここで, A,B,Cが整数のとき, ABCならば A,BはCの約数 を利用して, ① を満たす整数m+n, m-nの組を考える。 (は自然数)とおき,両辺を平方して整理すると²-n²=40 (m+n) (m-n)=40 ・① このとき,0,n>0より+n>0であるから,①が満たされるときm-n>0 更に,m+n>m-nであることを利用して,組の絞り込みを効率化するとよい。 CHART 整数の問題 (積)=(整数)の形を導き出す 1 - (2数の積)=(整数)の形。 解答 ²+40mmは自然数) とおくと n<m 平方してn²+40=m² ゆえに (m+n) (m-n)=40 mnは自然数であるから, m+n, m-nも自然数であり, 40の約数である。 また,m+n>m-n≧1であるから ① より [m+n=40 [m+n=20 m-n=1 > 一致す ... m+n=10 m+n=8 m-n=5 m-n=2'lm-n=4' 41 13 3 解は順に(m,n)=(1/2,228) (11, 9), (7,3), 39), (22.2) したがって、求めるnの値は n=9, 3 <<n=√√n² <√n² + 40 =m ①m²-n²=40 <n>0から m+n>m-n <m+n=a,m-n=bとす ると a+b 2 a-b 2 <m n が分数の組は不適。 m= n= 検討 積がある整数になる2整数の組の求め方 上の解答の①のように、積) = (整数)の形を導く 1つである。(積)=(整数)の形ができれば、指針の 答えにたどりつくことができる。 また、上の解答では、積が 40 となるような2つ の自然数の組を調べる必要があるが, そのような組 は、右の で示された, 2数を選ぶと決まる。 例えば、 140 に対して (1,40) と (40, 1) の2組 ある。 ちなみに, 「(積が40となる) 2つの整数の組」 が決まるから、条件を満たす組は全部で4×2=8 (組) という条件の場合は、負の場合も考える必要がある ため、組の数は倍 (16組) になる。 しかし、上の解答では, る。 なお、整数α bに対し (a+b)(a-b) = 26 (偶数) であるから, a+b と α-bの偶奇は そのことを利用すると, 上の解答の の組は省くことができて, 2組に絞られるか ことは,整数の問題における有効な方法の を利用することで,値の候補を絞り込み, 40 の正の約数 4023・5 から (3+1)(1+1)=8(個) 1,2,4,5,8,10, 20, 40 を利用することで, (m+n,m-n) の組を4つに絞る工夫をしてい 473 4章 17 約数と倍数、最大公約数と最小公倍数 る。 であ であ 1, n- 音数 あ あ った 数 こ ① + PN >

回答募集中 回答数: 0
数学 高校生

103.2 記述に問題点等ありますか?

と 素 のの 参照。 倍 や 考え さ の はる 去は、 音数 され 本書 数は して、 含め ・35 きる = 5.7 基本 例題 103 約数と倍数 は0でない整数とする。 a, a 1①1) 1/14/0 a がともに整数であるようなαをすべて求めよ。 とんがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (2) a (③) a が6の倍数で,かつaが6の約数であるとき,aをbで表せ。 「αが6の倍数である」ことは,「6がαの約数である」 ことと同じであり,このとき, 整数kを用いて a=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 (1) が整数であるから, αは5の倍数である。 ゆえに, って 40 40 8 a 5k k 40 が整数となるのはんが8の約数のときであるから a k = ±1, ±2, ±4, ±8 α=5kと表される。 を整数として したがって α = ±5, ±10, ±20, ±40 (②) a,bが3の倍数であるから,整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7-46=7・3k-4・3l=3(7k-4l) 7k4lは整数であるから, 7a-4bは3の倍数である。 (3) a が6の倍数, αが6の約数であるから, 整数k, lを用いて a=bk, b=al と表される。 a=bk をb=al に代入し, 変形すると b=0であるから (検討 これは 誤り! b(kl-1)=0 kl=1k,lは整数であるから a=±b したがって 00000 p.468 基本事項 ① k=l=±1 bαの約数 a=bk Laは6の倍数 < =k(kは整数)とおい 5 てもよい。 < α = 5k を代入。 負の約数も考える。 <a =5kにkの値を代入。 整数の和差積は整数で ある。 α を消去する。 k,lはともに1の約数であ る。 上の解答の で, lを用いずに, 例えば (2) で α=3k, b=3k のように書いてはダメ! これでは α = bとなり, この場合しか証明したことにならない。 α, 6は別々の値をと のようにk, Z (別の文字) を用いて表さなければならない。 る変数であるから, 練習 (1) 2つの整数 α, bに対して, a=bk となる整数kが存在するとき, bla と書く 103 ことにする。 このとき, a 20 かつ2αであるような整数α を求めよ。 証明せよ。 ただし, a, b, c, d は整数とする。 倍数ならば, ' + 62 は8の倍数である。 とげcdはabの約数である。 469 4章 7 約数と倍数 最大公約数と最小公倍数 17 5 O" ON YO 3 7 し

回答募集中 回答数: 0