学年

教科

質問の種類

数学 高校生

問題の質問の仕方的に、 G、O、Hが一直線上にあるのは前提条件だと思ったのですが、証明が必要ですよね。これはどこから証明が必要だと分かりますか? また、解説内のAG':G'M=AH:OMとHG:OG=AG:GMがあまりピンとこないのでどう考えればいいか教えて欲しいです。

線を 直径 2 質(*) → 半円の 鈍角 つ。 90° の の四 であ 重心・外心・垂心の関係 基本例題 72 00000 |外心と垂心を結ぶ線分を,外心の方から 1:2に内分することを証明せよ。 なお, 正三角形でない △ABCの重心,外心,垂心Hは一直線上にあって重心は 基本例題 71 の結果を利用してもよい。 指針 証明することは,次の [1],[2] である。 [1] 3点G,O,Hが一直線上にある。 これを示すには,直線OH上に点Gがあることを示せばよい。 それには, OH と中線 AM の交点を G′として, G′とGが一致することを示す。 [2] 重心 G が線分 OH を 1:2に内分する,つまり OG:GH=1:2 をいう。 AH // OM に注目して,平行線と線分の比の性質を利用する。 解答 右の図において,直線 OH と△ABCの 中線AMとの交点を G′とする。 AH⊥BC, OM ⊥BCより, AH// OM であるから AG' : G'M = AH : OM =20M OM LD B (G) # O 1 M A GH 1 p.406, 407 基本事項 1 ②2,④4 =2:1AM+SED" TAMは中線であるからGは△ABCの重心G と一致する。 よって,外心,垂心 H, 重心Gは一直線上にあり HG : OG = AG:GM=2:19 すなわち OG:GH=1:2 垂心,外心の性質から。 基本例題 71 の結果から。 検討」 外心,重心,垂心が通る直線 (この例題の直線OH) を オイラー線という。 ただし, 正三角形ではオイラー線は定 義できない。 下の検討 ③ 参 照。 【検討】 三角形の外心,内心、重心,垂心の間の関係 - ① 外心は三角形の3辺の中点を結ぶ三角形の垂心である (練習72)。 円題歌 ② 重心は3辺の中点を結ぶ三角形の重心である (練習70)。 3 正三角形の外心,内心, 重心,垂心は一致する (練習71)。 したがって, 正三角形ではオイ ラー線は定義できない。 F-100 19MAS30* $13 J1 (p.118 EX48, 49 | 練習 ③72 0 は ALMN についてどのような点か。 △ABCの辺BC, CA, ABの中点をそれぞれ L, M, N とする。 △ABCの外心 413 3章 1 三角形の辺の比、五心 10 5 る う う。 ある 2-1) つ。 ある 1,2) 数で *ある たと 数は, には, ①へ。 nill 14234 るな を満

回答募集中 回答数: 0
数学 高校生

Aから③に行くまでの途中式がわからないです。 途中式を教えてください!

基本 例題 108 三角形の重心の軌跡 (連動形) 2点A(6, 0), B(3,3)と円x+y=9上を動く点Qを3つの頂点とする。 p.166 基本事項 1. [2] 重要 112. の重心の軌跡を求めよ。 指針動点Qが円周上を動くにつれて, 重心Pが動く。このようなものを連動形(Qに 動してPが動く)ということにする。 連動形の問題では、次の手順で考えるとよい。 以外の文字で [ 軌跡上の点P(x,y) に対し、 他の動点Qの座標は,x, 例えば,s,tを使い, QQ(s,t) とする。 (②2) 点Qに関する条件をs, tを用いて表す。 [3] 2点 P Q の関係から, s, tをx,yで表す。 42 [3] の式から stを消去して, x,yの関係式を導く。 なお、上で用いたs, tを本書ではつなぎの文字とよぶことにする。 CHART 連動形の軌跡 つなぎの文字を消去して、x,yの関係式を 168 解答 P(x, y), Q(s, t) とする。 点Qは円x²+y²=9上を動くか +1²39 点Pは△ABQの重心であるか ら 6+3+s 3 y= 0+3+t 3 ②から s=3x-9, t=3y-3 ①に代入して したがって CFR (s, t), Q 31 OP(x (3x-9)²+(3y-3)² =9 (x-3)²+(y-1)²=1 ゆえに, 点Pは円 ③上にある。 逆に, 円 ③ 上の任意の点は、条件を満たす。 こって、求める軌跡は B(3, 3) 6 AX 点Qの条件。 点Pの条件。 zBunk 中心が点 (3,1), 半径が10円 (*) <P, Q の関係から, s, で表す。 なお, A 13 (3(x-3))²+{3(y-1 この両辺を2で割っ XJ を導く。 (*) 円(x-3)+(y- でもよい。

回答募集中 回答数: 0
数学 高校生

白チャートの重心の問題です! (2)がわかりません!分かりやすく解説お願いしたいです!

1 & the △ABCの重心をG, 直線AG, BG と辺BC, AC の交点をそれぞれD, E とする。また, 点Eを通り BC に平行な直線と直線AD の交点をFとする。 AD=aとおくとき,線分 AG, FG の長さをα を用いて表せ。 (2) 面積比 △GBD : △ABC を求めよ。 CHARI GUIDEMOC 三角形の重心 2:1の比辺の中点の活用く (1)(後半) 平行線と線分の比の関係により AF:FD を求める。 E は辺 AC の中 点であることに注意。 (2) △ABDと△ADC, △ABG と AGBD に分けると, それぞれ高さは共通で等し いから、面積比は底辺の長さの比に等しいことを利用する。 解答 (1) G は △ABC の重心であるから AG: GD=2:1 AG =- -AD=- a 2 2 よって 2+1 3RD DE CASA また,Eは辺ACの中点であり, FE//DCであるから AF : FD=AE: EC=1:1 A よって ゆえに AF-12/AD-124 FG=AG-AF = すると = 1/30-120- よって したがって a ²-0-1-a=—a (2) 点Dは辺BCの中点であるから AABC=2AABD また. AD: GD=3:1 であるから AABD=3AGBD AABC=6AGBD $ROS AGBD:AABC=1:6 B ① B Bh' 2/F D G A ID E1108 GSGRO084 (1) 中 ign/58 h A = CRO 080平行線と線分の比の関係 8308 内高さがんで共通 HAABC: AABD 3章 C 三角形の辺の比,外心・内心・重 ←高さがん で共通 SAABD: AGBD =BC : BD IL =AD: GD

回答募集中 回答数: 0