学年

教科

質問の種類

数学 高校生

数C 位置ベクトル 59と60の問題について、考え方が付属の回答とかなり異なっていたためこのような答え方考え方でも大丈夫なのか見て頂きたいです。 よろしくお願い致します。 付属の回答も付けました。

B 59 △ABC の辺BC, CA, AB を 2:1に内分する点をそれぞれ D, E, F とする。 このとき, △ABCと△DEF の重心が一致することを証明せよ。 A 51,52 □ 60 四角形ABCD の辺 AB, BC, CD, DA を 3:2に内分する点をそれぞれ E,F,G, A 51 Hとする。 四角形 EFGH が平行四辺形ならば, 四角形ABCD も平行四辺形であること を証明せよ。 AJ 53 □ 61 △OAB において,辺OA を 3:1に外分する点をC, 辺ABを32に内分する点を D, 線分 BC を 1:kに内分する点をEとする。01 (1) OA = c, OB = とするとき, OE を a, とんを用いて表せ。 (2)3点 0, D, Eが一直線上にあるとき, kの値を求めよ。 62 平行四辺形ABCD において,辺BCの中点をE, 辺 CD を2:1 に内分する点を F, AJ 55,56 線分AE と線分 BF の交点をPとする。 AB = 1, AD = d として,AP を b, dで表せ。 また, BP:PF, APPE を求めよ。 63 △ABC の辺BC, CA, ABの中点をそれぞれL, M, Nとする。 このとき, A 58 AL = MN ならば AB AC であることを証明せよ。 章 ベクトル 59 AB-B このとき AG B2=-1 AX+AB+AC また、EFDの重心をG'とする。 AC-2 とする。 F E ① - D B 6 DIC AF=AB = 7 B AE=AZ = AB 2 =1/2AB+1/A2 = ++38 -AG 1= 2.11 2. NG AF + KE + AB = +16+ + + (++ 2)] = 1/1/13 ( 1² + 2 ) -② AG=Rよって、△ABCとODEFの重心は一致する。 ①② 64 [OA| =3, |OB| =2, ∠AOB=60° の △OAB において,点0から直線ABに垂 線を下ろし、直線ABとの交点をHとする。 OA = 1, OB = とするとき, OH を a, 方で表せ。 60腐=AD= JAC = 2 A HJ D とおく、 E G 四角形 EFGHが平行四辺形ならば の 参考 内積と三角形の面積 教 p.34 65 平面上に3点0(0,0), A(5,12), B(-4, 3)がある。 OA, OB のな 教 p.341 す角を0とするとき, 次の問に答えよ。 (1) cost, sin の値を求めて, △OAB の面積を求めよ。 (2) 原点OA (1, a2), B(b1, b2) を頂点とする △OAB の面積Sは S=1/23 lababy となることを利用して,△OABの面積を求めよ。 66 3点A(4, 3),B(8, 5), C(5, 8) を頂点とする三角形の面積を求めよ。 まとめ 5 HG=EFである。 → HG = AG - AH = (AC+ b) - Ab 5 EF ①より + +2 5 5 AC - AB 2 " → AF - AE =(AB + 26+121-1236 12-16 2/2 + 1/2 J 1 12 - 3 +2126 = = DZ = AZ - AD C-C-B) B = AB よってABCDは平行 2節 ・ベクトルの応用 21 23 このとき、

解決済み 回答数: 1
数学 高校生

確率統計についての質問です。写真で青マーカーを引いた>がなぜ出てくるくるのかわかりません。さらに、下にある紫のアンダーラインを引いた式もどうやって出したのかわからず、成り立つ意味もわかりません。どなたか教えてください。

6 mm ruled x Sh 2 正規分布 (615) B2-23 **** =56, 標準 優はおよ 例題 ■ B2.10 二項分布と正規分布 (1) **** ある植物の種の発芽率は60% である。この種を600個まくとする. (1) 発芽した種の数 X 340 以上となる確率を求めよ (2) 発芽した種の数が Y≧α の範囲にある確率が0.7以上となるよ うな整数αの最大値を求めよ。 君の成績 B600.2号)に従う. 考え方 600個の種をまき 1個の種が発芽する確率は、 100 60 3 5 であるから,Xは二項分布 第9章 Z 解答 (1)標準正規分布曲線は直線 x=0 に関して対称なグラフであるから,たとえば,確 P(Z≧-1.2)の値は,P(0≦Z≤1.2) +0.5 で求める. (2) P(zza a-360 ≧0.7=0.5+0.2より、α-3600 で Plosz_a 12 となるαの最大値を求める. 600 個の種をまき,発芽率は1/3であるから,Xは二項分布 B600.22) に従う。 5 a-360 ≥0.2 UTC+12 X-600x23 そ よって, Z=- 2点以上 600×3×(1-3) 分 X-360 とおくとZの Xが二項分布 12 B(n, p)に従うとき、 ある. -m=1.5 分布は標準正規分布 N (0, 1) とみなせる。 (1)P(X≧340)=PZ≧ 340-360 nが大きければ, X-np P(ZZ-1.67) Z= (q=1-p) √npa 12 =0.4525+0.5=0.9525 は、ほぼ標準正規分布 したがって、求める確率は, 0.9525 N(0, 1)に従う. 12 ≧0.7=0.5+0.2 2 138 1002 Z 0.20.5 Y-360 12 a-360 12 20.2 -0.520 12 であるから, a-360 12 したがって, α の最大値は, 353 Focus (2) P(a)=Pzza-360 PZ-360)>0.5より。 12 Posz≤-a-260 -> 0.52 より, a<353.76 P (0≤Z≤0.52) =0.1985 P(0≦Z≤ 0.53) =0.2019 YA 54 練習 二項分布 B(n, p)に従う確率変数Xの 平均m=np, 標準偏差 o=√np (l-p) 1問あたりの正答率が0.8である問題を400問解答し,その正答数をX とする. B1 B2 C1 ➡.B2-25 11 12 C2 B2.10 X≤α の範囲にある確率が0.4以下となるような整数αの最大値を求めよ。 **

解決済み 回答数: 1