学年

教科

質問の種類

数学 高校生

ここの2番の書いてある意味がわからないので,一つ一つ教えて欲しいです。

重要 xy 例題 21 内積を利用したux+vy の最大・最小問題 00000 平面上に点A(2,3)をとり、更に単位円x2+y2=1上に点P(x, y) をと る。また、原点を0とする。 2つのベクトル OA, OP のなす角を0とすると き内積 OA・OPを0のみで表せ。 (2) 実数x, y が条件 x +y2=1 を満たすとき, 2x+3yの最大値、最小値を求め 指針 [愛知教育大 〕 (1)Pは原点Oを中心とする半径1の円 (単位円) 上の点であるから |OP|=1 (2) (1)は(2)のヒント A(2,3),P(x, y) に注目すると 2 x +3y = OA・OP かくれた条件-1≦cos 0≦1 を利用して, OA・OPの最大・最小を考える。 基本11 1 章 3 ベクトルの内積 解答 OA・OP=|OA||OP|cose =√13cose (2)x2+y=1 を満たす x,y に | (1) |OA| =√22+32 = √13, |OP|=1から YA A(2,3) 内積の定義に従って計算。 対し, OP = (x,y) DA = (2,3) として2つのベ クトル OA, OP のなす角を とすると, (1) から -10 1 x 2x+3y=OA・OP=√13cos 200 20°180°より, -1≦cos≦1であるから, 2x+3y の 0=0°のとき最大, 最大値は 13 最小値は13 0=180°のとき最小。 |-|OA||OP|SOA・OP k 別解 1. 2x+3y=kとおくと 2 y= -x 3 3 Fonie |OA||OP| これをx2+y2=1 に代入し, 整理すると 13x24kx+k2-9=0 ...... ① から求めてもよい (p.612 重要例題 19 (1) 参照)。 20 xは実数であるから, xの2次方程式 ① の判別式をD xは実数であるから,x とすると D≧0 D =(-2k-13(k-9)=-9(k-13) であるから k2≦13 よって√13≦k≦√13 別解2. (x,y)= (cos 0, sin01) と表されるから 2次方程式が実数解を もつ 実数解⇔ D≧ (数学Ⅰ)である 三角関数の合成 ( 数学II) 2x+3y=2cos01+3sinA=√22+32sin(01+α)=√13sin(01+α) 3 2 ただし COS α= √13 sina= √13 1main (+α) ≦1であるから -√13≦2x+3y≦√130°≦0,<360° 2 =2を満たすとき, ax + by

未解決 回答数: 1
数学 高校生

加法定理の問題です。 画像の線を引いてあるところがわからないので、解説お願いしたいです。 よろしくお願いします。

第2問 (必答問題) (配点 15 太郎さんは、ボールをゴールに蹴り込むゲー ムに参加した。 そのゲームは、 右の図1のように地点 0か ら地点Dに向かって転がしたボールを線分 OD上の1点からゴールに向かって蹴り 地点 Aから地点Bまでの範囲にボールが飛び込んだ とき,ゴールしたことにするというものであっ B 3m ル ボールが転がされ、 ボールを蹴るライン A 3mi 2m 0 9m 図1 た。 ただし, ボールは点とみなし, 大きさは考えないものとする。 そこで太郎さんは, どの位置から蹴るとゴールしやすいかを考えることにした。 地点を通り,直線ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは, 0を原点とし、 座標軸を0からCの方向をx軸の正の方向、 OからBの方向をy軸の正の方向となるようにとり, 点Pの位置でボールを蹴るこ とを図2のように座標平面上に表した。 B. (5.0) B4 (2.0) A 0 図2 このとき 2点A, B の座標はA(0, 2), B(0, 5), ボールを蹴るラインを表す直 太郎さんは、最もゴールしやすいのは、 APBの大きさが最大になる地点Pであ ると考えた。 「レーの ∠APBの大きさが最大となる点Pの座標を求めよう。 ア イ (0<x9) とし、 図2のように, 2直線AP, BP とx軸の正の 向きとのなす角をそれぞれα, βとする。 この である。 クリー x- ウ x- エオ tana= tanβ= イ イ 1x <APB=a-B と表され、∠APBがらになることはないから,tan (e-β)を考え ることができる。 カキx tan (α-β)= となり, ケー コサx+ シス 常にクケコサx+ シス >0であるから, 0x9のとき, tan (α-β) > 0 である。 0 カキ さらに, tan (β)= と変形でき, 0<x≦9の範囲で シス タケ x+ コサ x シス タケ x+ は最小値 センをとる x ア 線 OD の方程式はy= x と表すことができる。 イ (数学Ⅱ, 数学 B 数学C第2問は次ページに続く。) (第3回-5) 以上のことから、点Pのx座標が タ のとき, ∠APBの大きさは最大である ことがわかる。 (第3回-6)

未解決 回答数: 1
数学 高校生

KP②-5 ソタについてなのですが、確率変数Wは卵1個の重さを表しているのは理解してるのですが、2枚目の写真の黄色のところと緑のところが同じ?置き換え?られてる理由がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

数学II, 数学 B 数学 C (2)養鶏場Kで収穫される卵1個の重さ (単位はg) を表す確率変数をWとする。 Wは母平均が m, 母分散が の正規分布に従うとする。 ただし,とは正の 実数である。 確率変数を Z= 0 W-mで定めると,Zは平均 サ,標準偏差 シ の正規分布に従う。 EXX -1≦Z≦1 となる確率は0. スセであるから,養鶏場Kで収穫された卵か ら1個を無作為に抽出するとき,その卵の重さw タ 5 となる確率は0. スセであることがわかる。 20 平均 m に対する信頼度 95%の信頼区間は 1である。(64.0.14) 母平均m を推定してみよう。 養鶏場K で収穫された卵から400個を無作為に 抽出し, 重さを調べた結果, 標本平均は 64.0g, 標本の標準偏差は5.0gであっ た。 標本の大きさが十分に大きいときには, 母標準偏差の代わりに標本の標準偏 差を用いてよいことが知られている。 標本の大きさ400は十分に大きいので母 チ タ の解答群(同じものを繰り返し選んでもよい。) 0.87 0.95 ①m+o ②m+20 -0 ④ m-o m-20 チ については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 61.1mm 66.9 61.8mm 66.2 ④ 63.5≧m≦ 65.9 ① 61.8mm 64.5 62.7mm 64.5 ⑤ 63.5mm≦64.5 (数学II, 数学B, 数学C第5問は次ページに続

未解決 回答数: 2