学年

教科

質問の種類

数学 高校生

数学Ⅰの方程式の問題です。左写真の(1)(ⅲ)の問題で、解答にはx²-2x=tと置かれていたのですが、自分は右写真のように文字で置かずに解きました。そのときに解答では、文字でおいた後にtの範囲を求めていたのですが、自分の解き方の場合ではx²-2xの範囲を求めないといけないで... 続きを読む

69 68 第3章 2次関数 40 2次方程式の解とその判別 (1) 次の方程式を解け. (i)x2+4x-20 (ii)^-52+4=0 (iii) (x²-2x-4)(x²-2x+3)+6=0 (2) 2次方程式 x-4x+k=0 の解を判別せよ。 精講 (1) 2次方程式を解く (=解を求める)方法は次の2つです。 ① 因数分解した式) = 0 ② 解の公式を使う ②を使えば,因数分解できなくても解を求められますが,因数分解できる 式では,必ず因数分解する習慣をつけましょう. (2) 2次方程式を解くと, その解は次の3つのどれかになります。 ① 異なる2つの実数解 ② 実数の重解 ③実数解はない この3つのどれになるかを判断することを2次方程式の解を判別するとい います。 このとき, 判別式といわれる式を利用します。 解答 (1) (1) 解の公式より, x=-2±√60) (ii) 4-5x2+4=0 は (x²-1)(x²-4)=0 :.x2=1,4 よって, x=±1, ±2 tap 30- (i) (x²-2x-4)(x²-2x+3)+6=0 において x²-2x=t とおくと x²-2x をひとまとめ t=(x-1)2-1 だから, t≧-1 37 ポイント (t-4)(t+3)+6=0 .. t-t-6=0 .. (t-3)(t+2)=0 t≧-1 だから, t=3 |かけて-6, たして 1 となる2数を考 よって, x2-2x=3 (x-3)(x+1)=0 .x=-1,3 えると32 001 W

解決済み 回答数: 1
数学 高校生

答えがないので、問3.4.5の答えが合っているか見ていただきたいです🙏🏻お願いします🙇🏻‍♀️

に 数と式 0でない定数項の次数は0とする。 数 0 の次数は考えない。 着目する文字を含まない項を定数項という。また, 例 3 多項式 x+ax2+bx-2c はxについて3次式である。 の係数は1, x2の係数は α, xの係数は6, 定数項は2c 5 5 問3 次の多項式はxについて何次式か。 また, 各項の係数と定数項を答えよ。 (1) 2x-13次式 12-1 (2)x2+(a+b)x+αb 2次式 atb :ab 例 4 多項式 xy+y2+1 は, xについて3次式であり, yについて2次 式である。 また, xとyについて4次式である。 問4 10 次の多項式は、[ ]内の文字について,それぞれ何次式か答えよ。 2次式 (1)x-xy2 4次式 x][y][xとy]ら株式 10 15 (2)x+axy+axy2+y[x],[y][xとy] 4次式 3次式 4次式 多の整理 xについての多項式 5x2+x-2x2+1 において, 5x2と2x2のように, 文字の部分が同じである項を同類項という。 15 同類項は, 5x²-2x2=(5-2)x2 =3x2 : a ( 20 のように1つにまとめることができる。 多項式は、ある特定の文字に着目し, 7x2+4x+8 のように各項を次数 の高い方から順に並べて整理することが多い。 このことを降べきの順に 整理するという。 また, 8+4x+7x2 のように次数の低い方から順に並べ ることを昇べきの順に整理するという。 20 例 5 多項式 x2+2x-1-4x²-6x+3 を降べきの順に整理すると, (1-4)x2+(2-6)x+(-1+3)=-3x²-4x+2 25 問5 次の多項式を xについて降べきの順に整理せよ。 (1)3x²-5x+6-5x2+2x-3 (2)2bx+x+5c-ax2+bx =3x5x²-5x+2x+6-3 =x-ax+bx+5c -2x^2-3x+3

解決済み 回答数: 1
数学 高校生

絶対値のついた方程式を解くとき、場合分けをした範囲にその範囲を満たす解がない場合があるのはどうしてですか。変なこと言っているのは十分承知なのですが教えていただけると嬉しいです。イメージ的には連立不等・方程式(勝手に作りました)を解いてるみたいなものなのですかね。

A (A≧0 のとき) -A (A<0 のとき) 基本 例題 41 絶対値を含む方程式 次の方程式を解け。 含む不等式の解法 (1)|x-2|=3x8-xS+ | (2) |-1|+|x-2|=x 指針 絶対値記号を場合分けしてはずすことを考える。それには, 141={_^ 00 であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち, | |内の式=0の値である。 (2) (1)x2≧0と x-2<0, すなわち, x-2<0 x-2≥0 x≧2とx<2の場合に分ける。 x-1<0x1≧0 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1, 2であるから, x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 2 x 場合の分かれ目 (1) [1] x2 のとき, 方程式は x-2=3x 重要 答 これを解いてx=-1 x=-1はx≧2を満たさ ない。 [2] x<2のとき, 方程式は これを解いてx= x= 2 2 1 [1], [2] から, 求める解は x= 2 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないか 必ずチェックするこ (解答の の部分)。 m 最後に解をまとめて (2)[1] x<1のとき,方程式は(x-1)(x-2)=xx-1<0, x-2<0- 不 -(x-2)=3x 1/1 は x<2を満たす。 すなわち -2x+3=x -をつけて」を これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 x=1は1≦x<2を満たす。 [3] 2≦x のとき, 方程式は (x-1)+(x-2)=x す。 x-1≧0, x-2<0 すなわち 2x-3=x 2 <x-1>0, x-2≧ > これを解いて x=3 x=3は2≦xを満たす。 以上から. 求める解は x=1,3 最後に解をまと y=x-2のグラフと方程式 (1)について y=x-2は, x≧2 のとき y=x-2 yy=3

解決済み 回答数: 1
数学 高校生

青丸のところまでは理解できるのですが、なぜ可能性1.2の表になるのか分かりません。()の順番も様々であらゆるパターンがありすぎてこの表に辿り着けません。 教えてください。

8. 正解 - (5) 解説 条件より 「Aは4回とも ムの1回目 2回目, 3回目, 4回目とも, 得点は0であった。 これを (0, 0,0,0) と表すことにする。 「Bの合計得点は1点であった」 ので、4回のゲームのうち, 1回だけ3位 であったと考えられる。 ただ、何回目のゲームで3位であったかはわからな い。とりあえずこれを (1,0,0,0) と表しておくことにする。 「Cは1回だけ3位以上になり,合計得点は3点であった」 ので,Cは1回 だけ1位になったと考えられる。 ただ、 何回目のゲームで1位であったかは わからない。とりあえず,これを (3,0,0,0)と表しておくことにする。 「Dは3回3位以上になり,合計得点は4点であった」ので,Dは1回2 位になり、2回3位になったと考えられる。 とりあえず,これを (2,1,1, 0) と表しておくことにする。 「Eの合計得点は6点であった」ので、可能性としては次の3通りが考えら れる。 「1位が1回、2位が1回、3位が1回」 「1位が2回」 「2位が3回」。 これらをとりあえず,3,2,1,0) (3,3,0,0) (2,2,2,0) と表しておく。 「Fの合計得点は10点であった」 ので、可能性としては次の2通りが考え られる。 「1位が2回, 2位が2回」 「1位が3回,3位が1回」。 これらを とりあえず (3322) (3,331) と表しておく。 以上を整理すると, A(0, 0, 0, 0) B (1, 0, 0, 0) C (3, 0, 0, 0) D (2, 1, 1, 0) E(3,2,1,0)(3,3,0,0) (2,2,2,0) F (3,3,2,2) (3,3,3, 1)

解決済み 回答数: 1