学年

教科

質問の種類

数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1