学年

教科

質問の種類

数学 高校生

(3) a n−1 − a n =2のn乗−3n+1が階差数列になるというイメージが湧きません。階差数列になる証明とか具体例を教えてくださいよ

基本 例題 寺差数列,等比数列, 階差数列と漸化式 次の条件によって定められる数列{a} の一般項を求めよ。 (1) a1= -3, an+1=an+4 ((3) a1= 1, an+1=an+2"-3n+1 指針 00000 463 (2) a1=4,2a+1 +34=0 [(3) 類 工学院大 ] P.462 基本事項 1 漸化式を変形して, 数列{an} がどのような数列かを考える。 (1) an+1=an+d (anの係数が1で,dはnに無関係) 公差dの 等差数列 (2) an+1=ran (定数項がなく,rnに無関係) →公比の等比数列 (3) an+1=an+f(n) (anの係数が1で, f (n) はnの式) →f(n)=b とすると,数列{bn} は {an} の階差数列であるから,公式 n-1 n≧2のときan=a+bk を利用して一般項 αを求める。 k=1 (1) an+1-an=4より,数列{an}は初項 α1=-3,公差4の 等差数列であるから an=-3+(n-1)・4=4n-7 解答 3 (2) an+1=- 2 -an より, 数列{an} は初項α1=4,公比 3 <a=a+(n-1)d 2 の等比数列であるから an=4 3\n1 章 漸化式数列 (3) an+1-an=2"-3n+1より, 数列{an} の階差数列の第n 項は2"-3n+1であるから, n≧2のとき an=arni 階差数列の一般項が すぐわかる。 (LC- n-1 an=a+(23k+1) k=1 =1+22-32k+21 k=1 k+2nd ton=1+ 2-1 2(21-1) -3.12 (n-1)n(n-1) k=1 HALUC 53055AP 3 5 =2"- n²+ n-2 ① 2 2 n=1のとき 21-3.1²+5.1- ・1-2=1 n-1 k=1 n-1 Σ2は初項2, 公比 k=1 2 項数n-1の等比 数列の和。 a =1であるから,①はn=1のときも成り立つ。 したがって 主意 3 5 n-2 + a=2"-n²+n-2 初項は特別扱い an+1=an+f(n) 型の漸化式において,f(n) が定数の場合, 数列 {a} は等差数列となる。 24(0)

解決済み 回答数: 1
数学 高校生

すなわち、7、9、11となっていますが、答えは7、9、11でも11、9、7、のどちらでもいいから好きな方を1つ選んで答えにしてるという捉え方で合っていますか?? また、3数の順序を問われていないから答えは一通りでよい。と解説されているのですが、順序を問われてないからこそ可... 続きを読む

を求めよ。 00 一証明し,その初 p.414 基本事項 を示す。 -るには,(1)と同 例題 4 等差中項 等差数列をなす 3数 419 00000 数列をなす3数があって, その和は27,積は693である。 この3数を求め 等差数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公差 d として a, a+d, a+2d と表す P.414 基本事項 基本12 (形) ② 中央の項α, 公差 d として a-d, a, a+d と表す (対称形) ③ 数列 a,b,c が等差数列⇔ 26=a+c を利用 の表し方のとき, 3つの数の和が (a-d)+a+(a+d)=3a なお、この中央の項のことを 等差中項という。 となり, dが消去できて計算がらくになる。 (平均形) +d +d a-d a a+d 中央の項 答 a, この数列の中央の項を、公差をdとすると、3数はa-d, 12 対物形 a+d と表される。 和が 27, 積が693であるから ((a-d)+a+(a+d)=27 (a-d)a(a+d)=693 3a=27 1617 ① la(a²-d2)=693 ・・・・・・ ② a=9 9(81-d2)=693 ゆえに ①から an=d x1+7 これを②に代入して よってd=417 で よって、 求める3数は ゆえに =-3n+7のn すなわち 7, 9, 11 d=±2 3数をa-da, a+d と表すと計算がら。 OS 81-d2=77 7 9 11 または 11,97 1001 をとげると 3数の順序は問われてい ないので, 答えは1通り

解決済み 回答数: 1
数学 高校生

解説お願いします。 数学的帰納法の問題です。 写真の紫マーカーのところで、nにk+1を代入するはずなのにnにkを代入しているようにみえます。 私はどこの部分で間違えた考えをしているのか教えていただきたいです。 よろしくお願いします。

[頻出 例題 324 数学的帰納法 〔5〕… 漸化式から一般項を推定して証明 ★★★☆ a1 = -1, an+1 =an2+2nam-2 (n = 1, 2, 3, ...) で定められた数列 {a}について (1) 2, 3, a をそれぞれ求めよ。 (2){a}の一般項を推定し, その推定が正しいことを,数学的帰納法を用 いて証明せよ。 思考プロセス 規則性を見つける a1=-1 ②より a2= ⑦より - an = f(n) と推定 a4= ⑦ より ⑦ より ⇒ 推定が正しいことを数学的帰納法で示す。 [1] n=1のとき正しいことを示す。 [2] n=kのとき正しいと仮定して, ...=f(k+1) を示す。 koken=k+1のとき より 4k+1=... noibA Action» 複雑な漸化式で表された数列の一般項は,推定し数学的帰納法で示せ 解 (1) 与えられた漸化式に, n = 1, 2, 3 を順に代入すると a2= a +2・1・α1-2=(-1)+2・(-1)-2=-3 as = az2+2・2・az-2= (-3)2+4・(-3)-2=-5 a = a32+2・3・α3-2=(-5)2+6・(-5)-2=-7 (2)よりan = -2n+1 … ① と推定できる。 hes I [1] n=1のとき a1 = -2・1+1= -1 よって, ① は n=1のとき成り立つ。 [2]n=kのとき, ①が成り立つと仮定すると ak = -2k+1 n=k+1 のとき,与えられた漸化式よりは -Vaas ak+1=ak2+2kak-2 =(-2k+1)2+2k(−2k+1)-2 = -2k-1 = −2(k+1)+1 よって,①はn=k+1のときも成り立つ。 [1], [2] より,すべての自然数nに対して, a = -2n+1 が成り立つ。 {a} は, 初項-1, 公差 -2の等差数列であると 推定される。よって, そ の一般項 α は an=-1+(n-1) (2) = -2n+1 と推定できる。 漸化式に仮定の式を代入 する。 ①の右辺に n=k+1を 代入した形になっている ことを明示する。

解決済み 回答数: 1