学年

教科

質問の種類

数学 高校生

解答と過程が違うのですが、答えだけは合ってました。 自分の解答ではダメでしょうか

12 媒介変数表示された曲線 x=sint xy 平面上において,媒介変数 t (OSIS 2/27)によって オ) によって {sin と表される曲線をCとする。 ly=1-cos3t (1) C上の点でx座標が最大になる点Pとy座標が最大になる点 Qの座標をそれぞれ求めよ. (2) Cとx軸で囲まれた図形の面積を求めよ. (熊本大医/一部省略) Y C:y=H(x) t=1 媒介変数のまま積分 曲線C上の点が (x, y) = (f(t), g(t)) と媒介変数表 示されていて,0≦t≦1での概形が右図のようであるとする.Cをy=H(x)と表せ ば,網目部の面積はSH (x) dz であるが,H (z)が具体的に書けない,あるいは積 分計算ができないときは, x=f(t) と置換しての積分にする. 定め方から H(f(t))=g(t)dx 0 ax |t=0 dt =f(t)なので,面積はSog(t)f'(t) dt と書ける。 例題では,ェはtに関して単調 ではないので,単調な区間に分けて立式しなければならないが, 計算 (tで積分する式) は1つにまとめて行う ことができる。 ( 興課) 解答 xyの増減とCの概形は右 のようになる. gol-1 (1) P(1,1) (Q Q(√332) π π t 0 : 8 0 33 7√3/27 21 |2|3|3 YA π 2 √3/2 C gol y 0 7 2 1 0 1 P(t=) π π (2) Costs の部分が,y=y(r), ts/ πの部分が √3 2 (t=0) 2 y=y2(x) と表されるとすると, 求める面積は =)(1)=( 0x gol is 0-2 2 ・・① =(x) gal ( dx -=cost より dt xが単調な区間に分け, 一度,関 数型の式を書く. (S π ← S² 41(x) - (土) dx -dt などとなる. dt π 2 π + としてまとめる. +10 積 和の公式 登録 cos A cos B sint と置換すると, y1(x)=y2(x)=1-cos3t, π π 2 ①= (1-cos3t) costdt-J (1-cos3t) costdt =J 2 3 (cost-cos3tcost)dt = { cost- (cos 4t + cos 2t)}dt 2 2 -[sint-1-sin 41-1 sin2+ |* √3 2 8 4t-- √3 1 4. sin2+(D) 9 1 √3 4 2 16 11 8 2 -√3 (E) {cos (A+B)+cos (A-B)}

解決済み 回答数: 1
数学 高校生

0<=t<=1とはどういうことですか、教えてください。

例題 131 三角 00180°において、方程式 2cos°0-5sin0 +1=0を満たす0の他 Joies 100 を求めよ。 思考プロセス 変数を減らす 一方を消去 sin と cose sin0 (または cos0 ) だけの方程式 既知の問題に帰着 int とおく で tの方程式 を含む方程式 /sin'0+cos'0=1 置き換えたもの 値の範囲に注意 の利用 Action 三角比の2乗を含む式は、1つの三角比で表せ を利用せよ RoAction 文字を置き換えたときは、その文字のとり得る値の範囲を考えよ 例題76 扇 cos20=1-sin0 であるから,与式は19歳与えられた方程式の1次 2 (1-sin20)-5sin0+1 = 0 2sin0+5sin0-3 = 0 の項が sind であるから、 sin0 だけの式にする。 ... 1 ここで,sin0 = t とおくと,0°≧≦180°より心agoioad 0 ≤1 ≤1 方程式 ① は 2t2+5t-3=0 (t+3)(2t-1)= 0 1 よって t = -3, 2 置き換えた文字のとり 得る値の範囲に注意する。 Onia d 3 → 6 1 0≦t1であるから t= 1-2 031 01 YA sin0 = -3 を満たす角 1 130 すなわち sin - 1 12 2 ( は存在しない。 2 P したがって, 求める 0 は 0 = 30°,150° 単位円上で座標が 1/2 1 x となる点は,図の2点P, P'である。 05 Point... sin0, cost の2乗を含む方程式の解法の手順 ①sin°0 + cos 0 = 1 を用いて sind (または cose) だけの方程式をつくる。 (2) sint (または coset) とおいて, tの2次方程式をつくる ③置き換えた文字のとり得る値の範囲を求める (4 0° 0≦sin≦1 より 180°のとき, (または1 ≦ cosd ≦1 より - ③の範囲に注意して②のもの方程式を解く。 単位円を用いて,の値を求める 0 st≤1 TO

未解決 回答数: 0