学年

教科

質問の種類

数学 高校生

オレンジマーカーのところで、‪α‬+β=2p>2、‪α‬β=p+2>1にすると間違えちゃう理由をしりたいです!‪α‬>1、β>1ならこうしてもいいのではないでしょうか、、、?

基本例 例題 52 2次方程式の解の存在範囲 0000 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように, 定数 4.Bに対して、 値の範囲を定めよ。 日本)の間を求めよ。 (1) 2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 指針 2次方程式x-2px+p+2=0の2つの解をα,βとする。 p.87 基本事項 2 (1) 2つの解がともに1より大きい。 →α-1>0 かつβ-1>0 (2)1つの解は3より大きく、他の解は3より小さい。→α-3と β-3が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては, 解答副文の別解 参照。 2次方程式x2-2px+p+2=0の2つの解をα,βとし,判別解 2次関数 解答 別式をDとする。 4 f(x)=x2-2px+p+2 のグラフを利用する。 =(−p)²−(p+2)= p²−p−2=(p+1)(p−2) -23 (1) 1/2=(p+1)(p-2)≧0, 解と係数の関係から α+β=2p, aß=p+28jp.mm=軸について x=p>1, (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(B-1)>0 かつ (α-1) (B-1)>0 f(1)=3-p>0 から 23 VA x=p_y=f(x) 切 異なる2つの正の解 D20x120x320 異なる2つの肩の解 D20,xtBoxBio 異符号の解xco ⑤ 2次方程式=2P+P+2=0 定数の範囲 (1)2つの解がともにほり大きい。 α,Bとすると、え x+B=20 > 2 P>2. XB=P4221 P2-1. ①、②から. ☆Dミロも含まれる。 い ① P>2 # D= = = p² -p-2 =0 (P+1)(P-2) påtrzep 20 ① こうなるための 条件を求めるし 2章 9 解と係数の関係、解の存在範囲

解決済み 回答数: 1