学年

教科

質問の種類

数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0
数学 高校生

⑵です。 自分のような解答ではダメですかね。 数2B ベクトルです

Check 例題 352 交点の位置ベクトル(3) 考え方 (3) CCF を,g を用いて表す。 △ABCにおいて, BC=5, CA=6, AB=7 とする.この三角形の内接 円と辺BC, CA, AB の接点をそれぞれD,E,F とする.また, 線分BE と線分 AD の交点をGとする. AB=p, AC=gとして (1) 線分BD の長さを求め, ADをD, I を用いて表せ. (2) AGを. Gを用いて表せ。 (3) 3点C,G, F は一直線上にあることを示せ . 解答 C, G, F が一直線上にあるということは, CG = kCF となる実数kが存在すると いうことである. (1) BD=BF=x, CD = CE=y, AE = AF = z とおくと, よって, Focus x+y=5 ト y+z=6より, x=3, y=2, z=4 New B z+x=7 ABO BD=3, BD DC =32 なので, 2AB+3AC_2p+3g_ AD= 5 5 (2) 点Gは線分 AD 上にあるので, AG=kAD(kは実数) と表されるから, AG=12/3+1/23kg また, 点Gは線分BE 上にあるので, BG: GE=t:(1-t) とおくと, AG=(1-t) AB+tAE =(1-1) b+ ² ta 形 TER = ...... ② AG=² kb+ka34 …..① = 0, 0, 19 は平行ではないから,①,②より, B 10t= 9 12/231-4.12/23k/1/31 つまり 1/1381-1/3 k=1 6 → よって AG=1/31+1134 ( 広島市立大 ) X 3点A,B,Cが一直線上AC=kAB (kは実数) *** (3) CF=AF-AC-46-à CG-AG-AC (137+134)-9-130-139-13 (46-4) したがって CG-173CF よって, 3点 C, G, F は一直線上にある . BWA B -x- DyC F -3- 4 2 4 E E y IG 2 D 2 C 617 第9章

回答募集中 回答数: 0