学年

教科

質問の種類

数学 高校生

キ=n-2、ク=n-1になる理由が分かりません。 教えてください🙏

F22/5/5. 数学Ⅱ・数学B 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題) (配点 20) 花子さんは,毎年の初めに預金口座に一定額の入金をすることにした。この入金 を始める前における花子さんの預金は10万円である。ここで,預金とは預金口座 にあるお金の額のことである。 預金には年利1%で利息がつき, ある年の初めの 預金が万円であれば,その年の終わりには預金は1.01万円となる。 次の年の 初めには1.01万円に入金額を加えたものが預金となる。500 毎年の初めの入金額を万円と年目の初めの預金を4万円とおく。 ただ L. p>0 EL, n 3.0 v2z00 180.0 750,0 8230.000.0 20.0 40.0 zep 01580.000 TO 0 例えば, a1= 10+p, a2 = 1.01(10) + p) +pである。 10 10.0 00.0 001RIS.0 18.0 880.0 209.0165 02881.00a0jare.0 0 % 1.0 8.0 E.0 8.310 reel 01210 40 2.0 0 SES Dross.0 ass. .0 花子さんの預金の推移 Las 0 Dres D 0 Sa 0 0 0 2012 1年目の初め1 (1年目) 10+p 1年目の終わり 1.01 (10+ p) 0 6.0 a1 as 26.0200.00 万円入金 10.0 198008290 Suga 2年目の初め 81 00004.0 2年目の終わり (2年目) 1.01 (10+p)+p000 BEN 1.01 (1.01 (10+p) + p} a20 万円入金 STEA 3年目の初め (3年目) 3年目の終わり Be SS 参考図 (数学Ⅱ・数学B第4問は次ページに続く。 83 TS 83 S -44- (260644)

未解決 回答数: 0
数学 高校生

高1の数学の実テの問題で、(3)の解き方がわかりません。解説よろしくお願いします🙇‍♀️

[2] 次の【課題】に対する, 先生と太郎さんの会話を読んで,下の問いに答えよ。 【課題】 1月 IRISAS S I 々を正の定数とする。 実数xに関する2つの条件pg を次のように定める。 E Q:x < 3 命題 「pg」の真偽を調べよ。 先生:条件はaの値によってxの値の範囲が変わりますね, q=1のとき、命題 「pg」の真偽について考えてみましょう 太郎:α=1 のとき,条件p, q を満たす実数xの値の範囲を それぞれ数直線上に表すと右の図のようになるから 命題「p⇒g」は真であると言えます。 0 1 た 先生: 正解です。では、α=2のときも考えてみましょう。 太郎:a=2のとき、命題 「pg」はであると言えます。 先生:そうですね。では、命題 「pg」が真となるようなαの値の範囲はどうな りますか。 { 太郎: 命題 「pg 」 が真となるようなαの値の範囲は (イ) です。 先生: 正解です。では,次に【課題Ⅱ】を考えてみましょう。 【課題Ⅱ】 あ を実数の定数とする。 実数xに関する2つの条件 s, tを次のように定める。 s : 3≦x<5 t: x <6 または 6+1 <x 命題 「st」の真偽を調べよ。 先生: 命題 「st」 が真となるような6の値の範囲はどうなりますか。 太郎: 【課題Ⅰ】 と同じように数直線を利用して考えたら解けそうです。 I

未解決 回答数: 1
数学 高校生

(1)の定積分の問題なのですが、aとおいたあとの式までは理解できるのですが、その後どうして解答の2行目のような式になるのかが理解できません。教えて頂きたいです。

378 (1) f(x)=6x-x+S_f(t)dt 次の等式を満たす関数 f(x) を求めよ。 基本 例題 241 定積分で表された関数 (2) f(x)=f(x+1)s (d+) 000 Sdt-a. Su よって Sof(t) 指針 (1) f(x)はこれから求めようとする関数なので,定積分f(t)dt を計算するこ Sit -1 =FD-F また できない。ここで,F(x)=(x)とすると, S., であるから,S,f(t)dt は定数である。 よって、f(t)dt=a (a は定数) とおくと, f(x) =6x-x+αと表される Stadt=aである。この定積分を計算しての値を求める。 (2)f'(x+1)(0) は変数を含むから、f(x+ff(e)dr=(定数)とおくこと ない。そこで、まずはf(x+1)f(t)de=S,xf(t) dt+Sザ(t)dt と変形する。 そして、Soxf(edt において,xは積分変数に無関係であるから」の前に とができ、S'(x+1)f(t)dt=xff(t)dt + Suf(t) dt と変形できる。 Sof(t) dt と Sof(t) dt は異なる定積分であるから,それぞれを別の文字(定数 おく。 ゆえに よって これを解い したがって 定積分の扱し (1)S_f(t)dt=a とおくとf(x)=6xx+α (2) について 検討 × 積分 × 解答 よってS,f(t) dt=S(6t-t+a)dt ゆえに よって したがって (2) =2S(6t+a)dt =2[21³+at] =2(2+α) 2(2+α)=a a=-4 f(x)=6x2-x-4 S'(x+1)f(t)dt=Soxf(t)at+Soff(t)dt x は積分変数 tに無関係であるから Sxf(t)dt=xf(t)dt(s) ゆえに f(x)=xff(t)dt+Souf(t)dt+1 Sot ① S の定積分 -a 偶数次は25 また、> 奇数 0 定積分の S,f(t)dt=aから。 f(x)=6x2-x+a S'(x+1)f(nat f(x)+ xは定数として扱い 積分の前に出す。 練習 次の (1) ②241

未解決 回答数: 0