学年

教科

質問の種類

数学 高校生

解答は私が(ⅲ)で書いてあるところをcos²θで書いてあるんですけど、私のやり方の(ⅰ)〜(ⅲ)でも最終的に共通範囲を求めるとsinθ=1は含まない形になっているのですが、丸になりますか?? お願いします🙇‍♀️

148─数学Ⅰ 練習 0°≦180° とする。 xの2次方程式x2+2(sin0)x+cos'0=0が, 異なる2つの実数解を 151 それらがともに負となるような母の値の範囲を求めよ。 f(x)=x2+2(sin0)x+cos20とし, 2次方程式f(x)=0の判別 ①グラフ利用 式をDとする。 2次方程式f(x) = 0 が異なる2つの負の実数 D, 軸, f(k) に 解をもつための条件は,放物線y=f(x) がx軸の負の部分と, 異なる2点で交わることである。 すなわち、次の [1], [2], [3] が同時に成り立つときである。 [1] D>0359180 [2] 軸がx < 0 の範囲にある (軸)<0 [3] f(0) > 0 また, 0°0180°のとき 0≦sin0≦1…... ① D [1] 4 -=sin20-1 cos20=sin²0-(1-sin20) =2sin20-1=(√2 sin0+1) (√2 sin0-1) 1 D> 0 から sin < 1 - <sine.. ② 2√2 [2] 放物線の軸は直線x=-sin 0 であるから -sin0 < 0 よって [3] f(0) >0 から cos²0>0 すなわち cos 0=0 sin0> 0 ③ 0° 0≦180°であるから 0+90°... ① ② ③ の共通範囲を求めて ..... ④ 1/12 <sin01 0°≦180°であるから 45°<<135° ④に注意して, 求めるの値の範囲は 45°<0<90° 90°<0 <135° 9 YA 135°1 45 -1 0

解決済み 回答数: 1
数学 高校生

F1a-160 (3)についてです。 私は2枚目の写真のようにCを用いて考えたのですが、私のだとただB班が入る場所を決めただけだからダメなのですか? 3箇所選んでその中に入る人の並び方も考えないといけないからPを使ったのですか? どなたかすみませんがよろしくお願いします🙇‍♀️

第6章 場合の数 例題 160 条件のついた並び方(1) か **** A班4人,B班3人の合計7人が1列に並ぶ。次の並び方は何通りある (1) 並び方の総数 (2) B班3人が隣り合う イタ A か・ B班3人ともが隣り合わない 考え方 (2) B班3人が隣り合うので,まずは, B班3人をひ とまとまりとして考えて, 5個の順列を求める. 次に,B班3人の並び方について考える。 解答 5個の順列 BBBAAAA B B B 3個の順列 (3) 右の図のように, A班4人を並べて、 次にその間と両 端の5箇所(①~⑤) から, B班3人が1人ずつ入る 3箇所を決める順列と考える. (1)7人が1列に並ぶ順列だから, P7=7!=7・6・5・4・3・2・1=5040 (通り) (2) B班3人をひとまとまりにして A班4人との5個の順列として考えると, 5!=5・4・3・2・1=120 (通り) B班3人の並び方は,3!=6(通り) よって、B班3人が隣り合う並び方は, 120×6=720 (通り) (3) A班 4人の並び方は, 4!=4・3・2・1=24(通り) A班4人の間と両端の5箇所のうち3箇所にB班 3 人が1人ずつ入ればよい. AAAA BBB まずは、ひとまとま て考える。 S.I.0 積の法則 A班4人が隣り合う ことはあっても, B したがって, 入る方法は, 5個から3個取る順列だか 班3人が隣り合うこ (05, らっ 5P3=5・4・3=60 (通り) よって, 24×60=1440 (通り) Tocus 「隣り合う」 は 「ひとまとまり」に 「隣り合わない」 は 「後まわし」にして考える とはない. 積の法則 [考え]

解決済み 回答数: 1
数学 高校生

数学の文字入りの方程式の係数について質問です。 写真の(2)の問題が分かりません。 具体的には、 解答はa=0のときX=0になっていますが、 私はa=0のときXは全ての数だと思いました。 なぜならa=0のとき、Xに、どんな数を代入しても、答えがゼロになるのはかわりないと思... 続きを読む

00000 168 重要 例題 99 文字係数の方程式 α は定数とする。 次の方程式を解け。 (1) (a2-2a)x-a-2 (2)2ax²-(6a²-1)x-3a=0 7:52 重要 38, 基本 95 指針 (1) Ax=Bの形であるが, A の部分は文字を含んでいるから, 次のことに注意。 A = 0 のときは、両辺をAで割ることができない (「O で割る」ということは考えない。) ☆0で割れない A≠0, A = 0 の場合に分けて解く。 "STOP= (2) 問題文に「2次方程式」とは書かれていないから, x2 の係数が0のときとでない ときに分けて解く。 CHART 文字係数の方程式 文字で割るときは要注意 0で割るのはダメ! (1) 与式から 解答 a(a-2)x-a-2· ...... ① [1] α(a-2)≠0 すなわち a≠0 かつα=2のとき a-2 (*)(xの係数)=0のとき は,最初の方程式に戻って 考える 基本 (1) (ア) め 指針 x= a(a-2) 1 ゆえに x= a [2] α=0 のとき (*), ① から これを満たすxの値はない。 0.x=-2 [3] α=2のとき, ①から 0.x=0 これはxがどんな値でも成り立つ。 検討 Ax=B の解 A = 0 のとき A=0のとき ) B0 なら 0x=B 解はない (不能) B x= A a0 かつαキ2のとき 1 x=- B=0 なら 0x= 0 したがって a ← 解はすべての数 a=0のとき 解はない (不定) a=2のとき 解はすべての数 (2)[1] 2a0 すなわち α = 0 のとき, 方程式は すなわち,解は x=0 [2] α=0 のとき, 方程式から よって (x-3a) (2ax+1)=0 x=3a, - 1 2a a=0のとき x=0 x=0(x2の係数) = 0 のときは、 最初の方程式に戻って考 える。 <1 2a 2a -3a- -6a² X-30 1 → 1 -3a -(6a2-1) したがって 1 a≠0のとき x=3a, a≠0のとき 3 2a 解答

解決済み 回答数: 2
数学 高校生

(3)がわかりません、先生の解答と私の回答を添付しました a+3/2 < a+1 と a+3/2 ≧ a+1をなぜここで使ってくるのかがわかりません 解説よろしくお願いします🙇

習 【数と式 ⑤】 ★★★ 2次方程式2-(3a +5)x+a^+4a+3=0 ① (aは定数)がある。 (1) x=-1が方程式①の解であるとき,aの値を求めよ。 (2) 方程式①の解をαを用いて表せ。 1年間の総復習 【2次関数 ④ 放物線y=x4ax+2b...... ①がx a,bは定数とする。 (1) 放物線①の頂点の座標を求めよ。 (3) 方程式①の解がすべて, 不等式3a-5<2x < 3g+5 を満たすxの範囲内にある (2) 放物線 ①が点 ときの値の範囲を求めよ。 (1) ニートが解より代入 2(リー(3a+5)(-1)+a2+4a+3=0 2+3a+5+aziqa+3=0 Q:70+10-0 ・a=-2,-5 (11/16)を通るとこ 4'16 さらに, AB=2√5であるとき、 難 (3) 2点A、Bのx座標がともに0x めよ。 このとき, A. Bのx座標を うな整数の値を求めよ。 y=(x-243-4a2+21 (a+2) (a+5)=0 (2) 頂点(20-4026 ①がx軸と異なる2点 で交わっているので (2) 2-(a+3)→-a-3 2x²-(3a+5)x+(a+1) (a+3)=0 {x-(a+3)}{x-1)}=0 B) X = Q+3 atl 2 / 30-52x<3a+s (1) a+3 2 30-5 くく < atlaとはすなわち かつ a+3 atl<30+5 -② 1X-(a+1)→2a-2 -39-5 at3 ②とatは 大平関係はまだわから ない。0,10,-10 a+3c2a+2 ①が(本店)の代入 このと = -40 * +2b 2b=aよって b=/2/20 b<2087 Jacza 4a²-a> o 0140-1)>0 · a<o. <a⋅ (3)チス=400+2 fon= (x-a4a alaとき ここで、 軸x=2a SCRE ①、②aっしょり ①より 30-5913 at 3a75 J 134-50+3 2ac8 a<4-0' ②より 20+2c3a+s a2-3-②' -3 kack (l) a+3 12 ≧ atlaときすなわちa+3≧20+2 30<a+1 -③ 2 かつ a≦1のとき 2 ②より 3a-52a+2 a7-③ 8 0 fu fis ③-40+2b< b<za² ④ 02a8 019<4 26:0 b>o- ⑥564-32a+26 →a b16a- 39-5 +1 +336+5 ④からQ ③1 ④ry a+3<3a+5 7 07-115 -1<0≤1 a=1, 9組のう 満たすの Q=3

解決済み 回答数: 1