学年

教科

質問の種類

情報:IT 高校生

カで0からスタートした場合なぜj-1になるのですか?

目標 重要テーマを確実におさえよう! テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 7個のデータ [-100 20 30 40 50 60,1000] のうち,外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。 この〈プログラム> では, 元 のデータ7個が配列 Data[0], Data[1], 四分位範囲 の1.5倍 四分位範囲 Data[6] に格納されており,第1四分位数を q1, 第 3 四分位数を q3 とし,四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], ... に格納するものとする。 なお, すべての配列の添字は0か ら始まるものとする。 (1) Data=[-100,20,30, 40, 50, 60, 1000] (2) Data_c = [0,0,0,0,0,0,0] (3) q1=20 (4) g3=60 (5) j=0 (6) iを0からイ まで1ずつ増やしながら繰り返す : (7) | もし Data[i] = ウ and Data[i] <= エ ならば : (8) | | Data_c [j]=Data[i] (9) L L j = オ (10)s=0 (11)を0から カまで1ずつ増やしながら繰り返す: (12) L s = s +Data_c[i] (13) 表示する(キ) <プログラム> 空欄 ア ~ キに最も当てはまるものを, 次の解答群から一つずつ選べ。

未解決 回答数: 1
情報:IT 高校生

15番がなぜ6になるかわかりません 教えてください

11 次の文の( )に入る適切な語句を記入しなさい。 ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 バランスをシミュレーションしたい。 Xo ある日 (0日目)の始めの牧場の草の量をx とする。 牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため、草は1日の始めにeの倍率で増加すると考える。 y (3) e ④ Xa 20日目の終わりのときに残っている草の量は, y ) - (② )で示される。 6 e 草の増加率はeであるから, 1日目の始めの草の量x」は x1 = (③ ) x ((Ⓡ )-(⑤ 7 Xnt ) x (( で示される。したがって, n-1日目の始めの草の量をXn-1, n日目の始めの 草の量をxとすると, Xn = (⑥ )) (80) z ⑨ Xo=X1 )) となる。このとき,草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,x0 とxの間に ( 立つことが分かる。 ) - (Ⓡ 10 X1 11 e 12 Xo の関係式が成り 13 20 そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには, 0日目と1日目を考えて X0, X1, eを用いた式で表すと, 14) 1.25 6 )=(1 )) が成り立つ。 0日目の始めの草の量が100kgであるとすると,上の式と (⑨) の式から e = ( a)) x ( )-(® X= ex ex(Xo-20 であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって,草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 X=11x(x-20 x=1.1x-2.2 ここで仮に, e=1.1だとすると, 草は ( 日目のうちに枯渇 する。 現実的には, ヤギの食性や草の生育には天候・温度などさまざまな要 15 X-1.1x=-2.2 ==+2.

解決済み 回答数: 1
情報:IT 高校生

情報のプログラミングについて質問です。 写真の問題のコ、サ、に当てはまる答えがわかりません。(解答は写真二枚目です) 解答にはコ、、、⑦ サ、、、⑤ だとあったのですが、どうしてそれらが答えになるのかさっぱり分かりません。 分かりやすく教えて... 続きを読む

18 〈プログラミング1〉 次の文章を読み, 空欄 ア (2013年センター試験本試験 情報関係基礎 改題) ~ チ に入れるのに最も適当なものを、下のそれぞれの解答群 のうちから一つずつ選べ。 なお、 同じ記号を複数回選んでもよい。 に続いて、3日間の平均感染者数の推移のグラフを表示するプログラムを作成した。 なお, 「四捨五入()」は小数点以 30日間のウイルス感染者数が配列 Kansen に入っている。 Aさんは、毎日の感染者数の推移を表すグラフの表示 下を四捨五入して整数にする関数, 「棒表示 (a, b) 」 はaをb個分並べて表示する関数, 「要素数(配列)」は配列の要素数 を返す関数である。 [22,30,23, ... (略)・・ 29,35,42] ア まで1ずつ増やしながら繰り返す : (1) Kansen = (2) iを0から (3) 棒表示 ("@", イ (4) iを0から ウ まで1ずつ増やしながら繰り返す: (5) ) 棒表示 ("@", 四捨五入 ( I 図1 毎日の感染者数の推移と3日間の感染者数の推移を表すグラフを表示する手続き ⑩ 要素数 (Kansen)-3 ① 要素数 (Kansen) - 2 ② 要素数 (Kansen) - 1 ③ 要素数 (Kansen) ア ~ I の解答群 ④ 要素数 (Kansen) +1 ⑤ i ⑥ Kansen [i] ⑧ (Kansen [i] + Kansen [i + 1] +Kansen [i + 2])/3 9 (Kansen [i-1]+Kansen [i] +Kansen [i + 1]) / 3 ⑦ Kansen [i * 3] 次に,Aさんは, 7日間の平均感染者数の推移もグラフにしようと考え,まず, 七つの数値の平均値を求める関数 「平均7」を作成した。 関数の引数は複数の数値が入った配列 Hairetsu と, 平均を求める七つの要素の開始位置の添 字 start, 戻り値は平均値を整数にした値とした。 start は、 配列の先頭要素を指定する場合は0 を指定する。 (6)関数平均7 (Hairetsu, start) の定義: ↓うから (7) syoukei = オ (8) iを0から カ まで1ずつ増やしながら繰り返す : (9) (10) = syoukei syoukei + Hairetsu [start + ク 戻り値 (四捨五入 (syoukei/ キ (11) iを0から (要素数 ( ケ -7)まで1ずつ増やしながら繰り返す : (12) ( 表示("@",平均7 コ サ )) ' オ サ 0 0 ⑤ i 図2 7日間の感染者数の推移を表すグラフを表示する手続き の解答群 ① 1 ⑥ start 6 ⑧ syoukei Hairetsu Kansen (3) コンピュータとプログラミング 139

解決済み 回答数: 1
情報:IT 高校生

3枚目の回答に青線を引いた部分がわからないです どうして青線の部分のように問題文から読み取れたのか教えてください。

00 5:38-2. 第3問 次の文章を読み、後の問い (問1~3に答えよ。(配点 25) プログラミングに興味のある生徒Sさん (S)は担任の先生 (T)にクラスの席 替えをするためのプログラム作成をして欲しいと頼まれた。 80:8 018 SUB 418 lar-B T:このクラスは生徒が40人で、現在は図1のように座っています。 図1の数字は 現在座っている人の出席番号を表しています。 席替えの際は、ランダムに座席 PS B を割り振るようにしてください。 OSB 85:8 0C:8 教卓 SE B AC:8 86:8 5 24 40 8 36 BE-8 21 28 13 14 27 OA:8 10 1 39 3 37 SA:8 38 29 6 35 22 AA:8 17 32 34 18 19 9 7 16 33 26 21 2015 4 30 84:8 25 12 8 :8 11 31 08:8 sa:8 26 23 8:8 図1 a2:8 8218 097 031 00.1. 02 S : 今回は、2つの座席をランダムに決めてその座席に座る生徒を入れ替えるとい う操作をします。 この操作を十分に繰り返せば、 座席が十分に入れ替わった状 態になると思います。 席替えのプログラムを作るために, 座席を識別する番号 を振ることにします。 そこで図1の各座席に0番から39番まで番号を振りま きりした。 図2の座席の左側にある数字が座席番号です。 52 404 1 21 9 8 28 教卓 16 40 24 17 39 火 8 32 36 08 25 14 33 27 26 27 35 8 28 22N222 13 9 6 2 18 20 16 77 18 19 20 2 24 8 1 20 21 2 10 10 3 38 11 29 417 12 32 3 54 55 34 37 2 36 300C. 37 12 13 534 13 18 19 29 25 6 9 14 7 22 20 30 11 38 31 7 16 15 33 23 15 31 26 39 23 図2 - 24 -

解決済み 回答数: 1
情報:IT 高校生

⑭の問題の解き方がわからないです😢ちなみに答えは6です🙇‍♀️

ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。 牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため、草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, (Ⓡ ) - (② )で示される。 ) x ((Ⓡ 草の増加率はeであるから, 1日目の始めの草の量x は x1 = (3 9)-( )) で示される。したがって, n-1日目の始めの草の量をX-1, n日目の始めの 草の量をxとすると. x= 9) = )×((^ ) - (® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,xとxの間に (® 立つことが分かる。 の関係式が成り そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, )=(" )x((Ⓡ 12 )-(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると,上の式と (⑨) の式から e = = (14 ) であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって, 草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に,e=1.1だとすると, 草は ( 05 日目のうちに枯渇 する。 現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、 本来はより詳細なモデルが必要となる。

解決済み 回答数: 1
1/9