情報:IT
高校生
解決済み

⑭の問題の解き方がわからないです😢ちなみに答えは6です🙇‍♀️

ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。 牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため、草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, (Ⓡ ) - (② )で示される。 ) x ((Ⓡ 草の増加率はeであるから, 1日目の始めの草の量x は x1 = (3 9)-( )) で示される。したがって, n-1日目の始めの草の量をX-1, n日目の始めの 草の量をxとすると. x= 9) = )×((^ ) - (® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,xとxの間に (® 立つことが分かる。 の関係式が成り そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, )=(" )x((Ⓡ 12 )-(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると,上の式と (⑨) の式から e = = (14 ) であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって, 草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に,e=1.1だとすると, 草は ( 05 日目のうちに枯渇 する。 現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、 本来はより詳細なモデルが必要となる。

回答

✨ ベストアンサー ✨

恐らく、⑭の答えは1.25だと思います。X0=X1にしなきゃないので、X =e(X-20)。X = 100なので、e =100 / 80。e = 5/4 =1.25です。

⑮が6ですね。X = 100、y=20、e = 1.1で計算していくと7日目にマイナスになってしまうので6日しか持たないということです。

RS

すみません。厳密には6日目の朝の段階で、7.4になり、その日のうちに食われてしまって、ヤギさんも不満のままでした。

おと

ありがとうございます😭

この回答にコメントする
疑問は解決しましたか?