学年

教科

質問の種類

情報:IT 高校生

この問題で、3ビットで表した時に001111110110となると書いてあるのですがなぜそうなるのでしょうか? Geminiで聞いたら2ページのように回答が来ましたが、画像と合いません… どのように考えたら求められますか…? 解説お願いします🙏

第1回 問2 次の文章の空欄 イ ウ に入れるのに最も適当なものを,後の解答 群のうちから一つずつ選べ。また、空欄エオに当てはまる数字をマーク せよ。ただし、1012) のように 「(2)」を付した数は, 二進法表記の数である。 可逆圧縮の方法の一つであるランレングス圧縮は,繰り返されるデータの繰り 返し回数を数に置き換えてデータ量を減らす圧縮方法である。 図1のような黒白2色, 画素数 4×4の画像を左上から1行ごとに右方向へ1 画素ずつ読み取り,画素の色が黒のとき0,白のとき1と表すと,図1の画像 は, 0001111111000000の16ビットに符号化される。 読み取り順序 はじめ おわり 図 1 画素数4×4の黒白画像と読み取りの順序 ランレングス圧縮では,同じデータが連続するとき, そのデータと繰り返され る回数を並べて表す。 色を表す0または1の1ビットの後に、繰り返しの回数を 二進法で表して並べることにすると, 図1には最大で7回の繰り返しがあるた め、繰り返しの回数は001 (2) 111 ) の3ビットで表すことができる注)。この方 法によれば,図1のデータは001111110110となり、16ビットから12ビットに 圧縮できる。 このとき, 圧縮率は, 12 x100=75% 16 となる。 注) 繰り返しの回数を表す数値のビット数は,繰り返しの最大数を表すために必 要な最小のビット数とする。

解決済み 回答数: 1
情報:IT 高校生

⑭の問題の解き方がわからないです😢ちなみに答えは6です🙇‍♀️

ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。 牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため、草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, (Ⓡ ) - (② )で示される。 ) x ((Ⓡ 草の増加率はeであるから, 1日目の始めの草の量x は x1 = (3 9)-( )) で示される。したがって, n-1日目の始めの草の量をX-1, n日目の始めの 草の量をxとすると. x= 9) = )×((^ ) - (® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,xとxの間に (® 立つことが分かる。 の関係式が成り そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, )=(" )x((Ⓡ 12 )-(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると,上の式と (⑨) の式から e = = (14 ) であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって, 草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に,e=1.1だとすると, 草は ( 05 日目のうちに枯渇 する。 現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、 本来はより詳細なモデルが必要となる。

解決済み 回答数: 1
情報:IT 高校生

表の作り方がわかんないです、、

2 待ち行列 次の文章を読み, 問いに答えよ。 喫茶店Sでは, お客さんはレジでドリンクを注文した後, 受渡場所まで移 動してドリンクができあがるのを待つというシステムをとっている。オーナー このWさんは最近受渡場所が混雑していることに気づき、 最近の売上データを 参考に混雑状況のシミュレーションを行うこととした。 以下が売上データを精 査した結果である。 <精査結果 > お客さんの到着間隔は0分~6分の間である。 レジ担当は1人であり,レジでの注文と精算完了までに1分かかる。 調理担当は1人であり,ドリンクの調理時間は1分~5分である。また, 注文時刻と同時にドリンクをつくりはじめるが,先のドリンクをつくり終え るまで、次のドリンクをつくりはじめることはできない。 ・お客さんは注文時刻の1分後に受渡場所に移動し、商品の受渡を待つ。 待ち 時間は「受渡時刻- (注文時刻+1)」 で求めるものとする。 この結果より, ある日の開店からの10人分のデータをシミュレーションす ると、下表のようにまとめることができた。 2 (1) (2) (3) (2)( + 2 5. 客 到着間隔 到着時刻 注文時刻 調理時間 受渡時刻 待ち時間 1 20 0 2 2 1 2 2 2 2 5 7, 4 3 4 6 6 1 8 1 4 3 9 J 9 2 5 9 15 15 5 20 6 1 16 16 1 21 4 7 0.3 16 177 3 24 6 8 2 18 18 2 26 7 9 5 23 23 2 28 4 10 0 23 24 2 30 5 (1) 4人目以降の到着時刻 注文時刻・受渡時刻・待ち時間を表に記入せよ。 (2)10人のお客さんの平均待ち時間を答えよ。 (3)このシミュレーションの結果,同時にドリンクの受けとりを待っているお 客さんの最大人数は何人と考えられるか答えよ。 [計算スペース] 2000 31

未解決 回答数: 0