学年

教科

質問の種類

地学 高校生

放射性同位体の計算問題です。 (3)と(4)の解き方を教えていただきたいです。 計算過程も含めていただけると幸いです。

(3) 野外から採取した花こう岩の放射年代を求めるため、 花こう岩中の鉱物に含まれるカリウム40とアルゴン40の量比をしらべたところ、 アル ゴン40はカリウム40より7倍多く含まれていた。 カリウム40の半減期が13億年であるとすると、 この花こう岩の放射年代は何年か、な お鉱物中のアルゴン40はすべてカリウム40が崩壊してできたものとする。 計算結果が割り切れない場合は、 小数第1位を四捨五入し、 整数 で答えなさい。 (4) サイコロ 100個を用いて、次の手順で放射性同位体の崩壊の模擬実験をおこなった。 なおサイコロの目の出方は計算上の確率に完全にした がうものとする。 1) サイコロ100個を放射性同位体と見なし、箱に入れてよく振る。 2) 特定の目が出たサイコロは崩壊して安定な同位体に変化したと見なし、箱から取り除く。 625 1216 3) 残ったサイコロを振って、 2)を再度おこなう。 2) ~3)をサイコロをすべて取り除くまで繰り返す。 ① 1の目が出たサイコロは崩壊したと見なすと、 1回振ったときに残る個数の割合はもとの6分の5、 2回のときは36分の25となる。この 考え方にもとづいて、 3回振ったときに残る個数の割合を分数で答えなさい (解答欄の枠内に分母と分子を記入しなさい)。 ①の考え方を4回以降にもあてはめると、残る個数の割合がもとの半分 (2分の1) に最も近づくのは何回振ったときか。 整数で答えなさい。 (3) 崩壊前のサイコロをカリウム40 と見なした場合、 ① において1回振ることに経過する時間は何億年か。 ただしカリウム40の半減期は 13億年であるとし、サイコロの半減期となる回数は②の答となった整数を用いなさい (②が誤答の場 合、 ③ も答となることに注意)。 また、 答えは「億年」 単位で計算し、 小数第2位まで答えなさい。 200

回答募集中 回答数: 0
地学 高校生

地学の放射性同位体です 問題の解説と答えを教えて欲しいです 3番と4番お願いします

※動画実験を見て、実験A、Bの「1回m」の欄に個数を記入し、それぞれ合計を求め、グラフを作り、考察を行って下さい 地学基礎実験 放射性同位体の崩壊(コロナ対応特別版 サイコロを振った回数 (t) 横軸 「残った個数(G) 1回目 2回目 0:1:2 100 実験 3 4:5 6:7 2 34 33 46 8 9 13: 14 8 16: 17 414 7 10 15 18 42 46 48 63 11 12 19:20 21:22 17 100 82 63 53 23 24: 25 | 26: 27: 28 : 29 : 30 A |3回目100 44 40 29 28 34 83 21 21 69 75 17 8 8 8 29:24| 20 58 13 16 12 |4回目 8 6 の 0 残った個数の合計(G 縦輔 400 |100 87 23 19 「13 17 11 6 7 38 29 9 5 5 0 24 78 0 0 「1 |0 3ろ5:27/222:/91167| (37 「15 10 9 4 9。 17 0 0 0 67|50 42:4 0|0 4 (4 0 0 サイコロを振った回数(t) 横軸 42 実験 0 1 2 3 4 5 残った個数(G') 1回目■100 6 7 8 9 10 11 13 14 15 16 17 18 19 12 20 21 O 0 0 22 52 55 44 40 T1 23 24: 25 26:21:2% OO 0 10 0 0 「0 |0 「0 |0 |2回目 100 3回目| 100 4回目100 0 0 0 O 0 0 0|0 0:0 29 30 65 67 69 27 18 30 20 21 28 B 9 12 13 11 5 6 4 0 0 0 0 0 0 0 0 |0 0 0 0 0 0 0 00 9 0 3 4 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 残った個数の合計(G)縦軸 400: 213: 191:18: 7947 6 6 0 「0 0 「0 0 0 0 0 32 ; 22 0 0 0:0 0;0;0;010 0 0;010 ◆サイコロを振った回数 (t) と、残った個数の合計 (G) の関係のグラフ (Aと日の線の色を変えること)のそれぞれの実験において、以下に示すパーセント (%) になったときの模輪の値をグラフから読みとれ (目分量で1 0分の 営業 で読みとる)。また、それぞれの模軸の値の差(たとえば、25 %が 10.0回目で 50 %が1,0回目ならば、差は30 とな る)も表中に記入しなさい。 400) 100% 実験A 横軸の値 実験B 機軸の値 100 % (400 ) 0.0(国) 100 % (400 ) 50 % (200 ) 25 % (100 12.5% (50 ) 0.0() 差54 差 2.2 差 3.4. 50 % (200 ) 25 % (100 個) 12.5% (50 ) 実験A、実験Bのそれぞれの仮想放射性同位体の半滅期(最初の量が半分に減るまでの時間一サイコロを振った数)は 何回目となるか、上の表のデータをもとに答えよ。すなわち、上で求めた「差の平均」を取り、小数第2位を四捨五入し て○.○(回目)と解答せよ。 5.4 7.6 1.9 3.4 4.9 差19 差15 差/5 300 75% 半減期 37 1.7 実験A 回日 実験B 半減開 回目 のので、横軸1目盛りを 10億年と仮定する(サイコロを振った回数の間隔を 10億年と仮定するということ)。 このとき、この仮想放射性同位体の半減期はおよそ何億年となるか、グラフから読みとれ、 実験A、実験Bともに、①の結果をふまえ、億年の数字は整数で答えなさい。 半減期 30.7 億年 半減開 /0、7 他年 実験A 実験B 3花蘭岩中に含まれている"Uと"Pbの量比をしらべて絶対年代(放射年代)を決定する方法をウラン船(U-Po) 法と いう。この方法では、 Uの半減期は45.1億年である。 実験Aの仮想放射性同位体400個が、*Uであると仮定した とき、横軸1目盛りあたりの年数 (サイコロを振ってから、次に振るまでの時間)はおよそ何億年に相当するか。小数第 2位を四捨五入し、小数第1位まで答えなさい。求める式も書きなさい。ただし、用いる数値は考察Dの実験Aの半減期 の値を用いなさい。 150% 200 式 億年 実験Aの仮想放射性同位体の半滅期と実験Bの仮想放射性同位体の半減期のうち、半減期の長さが長い方はどちら 実験( 実験Aと実験Bのグラフの形の違いは、半減期の長さの違いである。 |25% 1の仮想放射性同位体の半減期の方が長 100 6感想:文章となるように書きなさい。 L 残ったサイコロの個数の合計(G)

回答募集中 回答数: 0