学年

教科

質問の種類

数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

回答募集中 回答数: 0
英語 高校生

英検の添削をしてほしいです

yright2025 Grade 2 4 ライティング(英文要約) ライティングテストは、 2つ問題 (45) があります。 忘れずに、 2つの問題に解答してください。 この問題は解答用紙 B面の 4 の解答欄に解答を記入してください。 以下の英文を読んで その内容を英語で要約し、解答欄に記入しなさい。 語数の目安は45語~55語です。 on T 解答は,解答用紙のB面にある英文要約解答欄に書きなさい。 なお, 解答欄の外 に書かれたものは採点されません。 「解答が英文の要約になっていないと判断された場合は, 0点と採点されることが あります。 英文をよく読んでから答えてください。 University students often plan for their future careers by attending job fairs or searching online for information about different kinds of work opportunities/ There are other ways./too. Some of them choose to join short-term work programs at companies called internships. / These have some good points. Students will be able to know more about companies they are interested in, such as what kind of jobs there are and what kind of people are working there. Also, internships allow students to get to know other students. These students can encourage each other both during and after the internship. On the other hand, if students choose to join very short internships, they may not be able to understand the job they are doing before the internships end. Also, students who take part in internships may find it difficult to do well in their studies. 2024年度第2回検定一次試験 (2級) .12 -> copyright2024 公益財団法人日本英語検定協会 無断転載・複製を禁じます

回答募集中 回答数: 0
化学 高校生

(1)と(2)の解説をお願いしたいです

問1 次の各問いに答えよ。 原子量は、H=1.0、C=120=16 とする。 図に示すように、ピストンにより容積 が変わるシリンダーA がコックのついた 管で容器 B とつながった装置があり、 装 置全体の温度を一定に制御できる恒温槽 に入っている。 シリンダーAには質量a[g]のメタン (気 体)が、容器 B には質量 5a[g]の酸素(気 体) が入っている。 ピストンが初期位置に Cata 16 容器 B シリンダー A コック |ピスト ピストン メタン 酸素 a [g] 5a [g] 管 P あるときコックは閉じており、シリンダーAと容器Bの容積はともに Vo[L]で等しく、温度もともに絶対 温度で To [K] である。このときのシリンダーA内の圧力を PA [Pa] とする。 気体はすべて理想気体とし、 管 の容積は無視できるとする。 (1) ピストンが初期位置にあるとき、 容器B内の圧力 [Pa] をシリンダーA内の圧力 PA を用いて表せ。 (2) ゆっくりとピストンを押し込み、 シリンダーAの容積を Vo/4 [L] とした後に、コックを開けてしば らく放置したところ、 メタンと酸素は反応せず互いに速やかに混合し、 その後装置内部の温度は To で 一様となった。このときの装置内のメタンの分圧 [Pa]を、 PAを用いて表せ。 (3) (2) の操作の後、 ピストンを固定して適切な方法で装置内のメタンを完全に燃焼させた。このときの 化学反応式を記せ。 (4) (3)の後、しばらく放置した後に装置内の温度が再び To となったとき、 容器内に液体の水が存在し た。 このときの装置内の全圧 [Pa] を PA を用いて表せ。 ただし、 温度 To での水の蒸気圧は、 0.10PA と する。 また、水蒸気の凝縮を除いて装置内の気体は水 (液体) へ溶解しないとし、温度変化によるシ リンダーAと容器 B の容積変化、および水 (液体)の体積は無視できるとする。

回答募集中 回答数: 0
1/1000