学年

教科

質問の種類

数学 高校生

(3)が文字が多すぎてわからないです💦 3つの文字がある時になぜ解答のようになるのか教えて欲しいです!!

第1章 い J 10 第1章 式と証明 基礎問 是 • 42項定理 多項定理 (1)次の式の展開式における[]内の項の係数を求めよ. (ii) (2x+3y) (x³y²] (i) (x-2) (x³) (2) 等式 nCo+mCi+nCz+..+nCn=2" を証明せよ。 (3)(x+y+2z)を展開したときのry'zの係数を求めよ。 精講 2項定理は様々な場面で登場してきます. ここでは I.2項定理の使い方の代表例である係数決定 Ⅱ.2項定理から導かれる重要な関係式 以上2つについて学びます。 2項定理とは, 等式 (a+b)=n Coa"+na" 16+... +nCkan-kbk+... +nCnbn のことで, Cha"-kb (k=0, 1, , n). を (a+b)” を展開したときの一般項といいます。 参考 次に (x+y) を展開したときの一般項は Cirkyk-i したがって(x+y+2z) を展開したときの一般項は 6Ck kCixiy-(22)6-k =26-• Ch* Ci x¹y-iz-k よって, ray'zの係数は k=5, i=3 のときで 216C55C3=26C1・5C2 ポイント =2・6・10=120 11 定数の部分と文字式 の部分に分ける (a+b)" =nCoa+nCian1+..+nCkan-kbk+…+nCnbn 20% (3)は次の定理を使ってもできます. 多項定理 (a+b+c)” を展開したときの abc" の係数は >>n! (x) p!q!r! (p,g,rは0以上の整数で, p+g+r=n) (x+y+2z) を展開したときの一般項は 6! p!q!r!xy(22)=- 276! p!q!r! xyz" p=3, g=2,r=1のときだから求める係数は (p+g+r=6) 答 (別解) (1)(i)(x-2)を展開したときの一般項は Cr(x)^(-2)=Cr(-2)7-'.' r=3のときが求める係数だから < Crx7" (-2)" でも その数 文字 7X6X5 7C3(-2)=- .24=560 3×2 よい 2・6! -=120 3!2!1! (i) (2+3y) を展開したときの一般項は 5C(2.x)(3y)=5Cr・2'35-xTy5-r r=3のときが求める係数だから 5×4×3 5C3・23・32= ・・2・32=720 3×2 sCr(2x)-(3y)" T 文字 もよい (2)(a+b)"=Coa+nCia-16++nCn-ab-1„ C„b" の両辺に a=b=1 を代入すると (1+1)=„Co+„C+..+nCn ..nCo+nC+..+nCn=2" (3)(x+y+2z)を展開したときの一般項は。Ch(x+y)^(2z)6-k 注 1. 多項定理を使うと, 問題によっては,不定方程式 p+q+r=n を解く 技術が必要になります. 注2. (1)(ii)のようにx,yに係数がついていると, パスカルの三角形は使いに くくなります。 演習問題 4 (1) (32y) における ry の係数を求めよ. (2) Co-C1+C2-nCs+..+(-1)"C=0 を証明せよ -

未解決 回答数: 1
数学 高校生

至急助けて欲しいです💦 どのように15通りを求めたかを教えてください🙇‍♀️

解説 _Student/Page/Student/Explanation.aspx?questionNo=752222 一組のトランプからハートとスペードのそれぞれ1~11のカードを取り出し、 この22枚をよく混ぜてから2枚を引くとき、2枚が異なるマークになるか、 2枚の数字の和が18以上になる確率を求めよ。 [狙い] 確率における和事象の求め方について理解する。 [方針] ① ベン図を書いて、 求めたい状況について整理する。 ②それぞれの事象単独で起きる確率を求める。 ③その確率の合計から、両事象が同時に起こる確率を求め、求める確率を計算する。 [答案] 和事象の問題。 各事象を足し合わせたものから重複分を除く。 全事象は22枚から2枚を引くので2C2通りであり、2枚が異なるマークになるのは、どの数字を 引くかで,x1=121通り。 次に和が18以上になる時を考えると以下のように場合分けできる。 和が18の時は (7,11) (8,10) (9,9)のみで、 マークを考えて(2C ×2C,)×2+1=9通り。 和が19の時は (8,11) (9,10)のみで、 マークを考えて (2C, x2C)×2=8通り。 和が20の時は(9,11) (10,10)のみで、マークを考えて,C×2C,+1=5通り。 和が21の時は(10, 11)のみで、 マークを考えて2C ×2C =4通り。 和が22の時は(11,11) のみで、 マークを考えて1通り。 合計9+8+5+4+1=27通り。 最後に両事象が同時に起こる場合を考える。 これは上の場合分けで異なるマークから取ることを考えると、5+4 +3 + 2+1 = 15通り。 121+27-15 133 したがって、 222 231

解決済み 回答数: 1
1/1000