学年

教科

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

(2)です。僕の解き方でどこが間違っているか教えてください

c 2直線の交点を通る直線の方程式 2直線 x+2y-4=0, 2x-y-30 に対して, 方程式 k(x+2y-4)+ (2x-y-3)=0 ① の表す図形とは? ただし, kは定数とする。 k=1 k=0 k=2 ① は, 連立方程式 x+2y-4=0, 2x-y-3=0 2x-y-3=0 2 の解x=2, y=1に対して常に成り立つ。 k=-1 1. x=2, y=1は2直線上の点なので x+2y-4に代入しても0 2 4 x 2x-y-3に代入しても 0 -3 x+2y-4=0 よって, kがどのような値をとっても ①は, 2直線の交点(2, 1) を通る図形を表す。 x=2, y=1 を代入したら式が成り立つので ① を x, y について整理すると (k+2)x+(2k-1)y-4k-3=0 ここで,x,yの係数k+2, 2k-1は同時には0にならない。これは直線の式なので 方程式 ① は, 2直線の交点を通る直線を表す。 (図のように,kの値によって (21) を通る直線がいろいろ決まる) ただし, 直線 x+2y-4=0は表さない。 (式) = 0 の形で表された2直線について k(式1こ目) + (式2こ目) = 0 は,交点を通る直線である。 例8 2直線x+2y-4=0, 2x-y-3=0の交点と点(-1, 5) を通る直線の方程式は? を定数としてk(x+2y-4)+(2x-y-3)=0 とすると,①は2直線の交点を通る直線を表す。 この直線が点(-1, 5) を通るとすると, ① に x=-1, y=5を 代入して ゆえに 5k-10=0 k=2 これを①に代入して整理すると 4x+3y-11=0 ①のなかから,(-1,5) を通る 「当たり」 の直線を見つけている。 [終]

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡の問題です。 亅の部分までわかったのですが、赤線部分の計算がわかりません 解説お願いします🙇

PR ③100 直線 2x-y+3=0 に関して点Qと対称な点をPとする。 点Qが直線 3x+y-1=0 上を動く とき、点Pの軌跡を求めよ。 第3章 図形と方程式 121 直線 3x+y-1=0 ・① 上を動く YA ② 点をQ(s, t) とし, 直線 2x-y+3=0 (s,t) ② に関して 点Qと対称な点をP(x, y) とする。 [1]点PとQが一致しないとき,直線 PQが直線② に垂直であり,線分 PQの中点が直線 ②上にあるから t-y y+t 1-2.2=-1, 2.x+8 +1 + S-x 1 0 +3= 0 (1) P(x,y) x よって s+2t=x+2y, 2s-t=-2x+y-6 s, tについて解くと 垂直 ⇔ 傾きの積が1 線分 PQ の中点の座標 は (xts, y+) -3x+4y-12 4x+3y+6 S= t= 5 5 2 s,t を x, y で表す。 点 Qは直線 ①上の点であるから 3s+t-1=0 ③④に代入して -3x+4y-12_4x+3y+6 3・ --1=0 <st を消去する 5 整理すると x-3y+7=0 ⑤ [2]点PとQが一致するとき, 点Pは直線 ①と②の交点で y=11 5 2 あるから x=-- 5' これは⑤を満たす。 以上から、 求める直線の方程式は x-3y+7=0 PR ④101 方程式 ①と②を連立 させて解く。 xy 平面において, 直線 l:x+t(y-3)=0, m:tx-(y+3)=0 を考える。 tが実数全体を動く とき,直線lとの交点はどのような図形を描くか。 [類 岐阜大 ] l:x+t(y-3)=0 :①, m:tx-(y+3)=0 [1] x=0 のとき,②から t=y+3 x x+y+3(y-3)= 0 これを① に代入して x 両辺にxを掛けて x2+y2-9=0 ② とする。 y+3 を利用する x ため, x=0 と x=0 の 場合に分けて考える。 3 PR

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
1/93