学年

質問の種類

数学 高校生

数Ⅱ 軌跡の問題です。 亅の部分までわかったのですが、赤線部分の計算がわかりません 解説お願いします🙇

PR ③100 直線 2x-y+3=0 に関して点Qと対称な点をPとする。 点Qが直線 3x+y-1=0 上を動く とき、点Pの軌跡を求めよ。 第3章 図形と方程式 121 直線 3x+y-1=0 ・① 上を動く YA ② 点をQ(s, t) とし, 直線 2x-y+3=0 (s,t) ② に関して 点Qと対称な点をP(x, y) とする。 [1]点PとQが一致しないとき,直線 PQが直線② に垂直であり,線分 PQの中点が直線 ②上にあるから t-y y+t 1-2.2=-1, 2.x+8 +1 + S-x 1 0 +3= 0 (1) P(x,y) x よって s+2t=x+2y, 2s-t=-2x+y-6 s, tについて解くと 垂直 ⇔ 傾きの積が1 線分 PQ の中点の座標 は (xts, y+) -3x+4y-12 4x+3y+6 S= t= 5 5 2 s,t を x, y で表す。 点 Qは直線 ①上の点であるから 3s+t-1=0 ③④に代入して -3x+4y-12_4x+3y+6 3・ --1=0 <st を消去する 5 整理すると x-3y+7=0 ⑤ [2]点PとQが一致するとき, 点Pは直線 ①と②の交点で y=11 5 2 あるから x=-- 5' これは⑤を満たす。 以上から、 求める直線の方程式は x-3y+7=0 PR ④101 方程式 ①と②を連立 させて解く。 xy 平面において, 直線 l:x+t(y-3)=0, m:tx-(y+3)=0 を考える。 tが実数全体を動く とき,直線lとの交点はどのような図形を描くか。 [類 岐阜大 ] l:x+t(y-3)=0 :①, m:tx-(y+3)=0 [1] x=0 のとき,②から t=y+3 x x+y+3(y-3)= 0 これを① に代入して x 両辺にxを掛けて x2+y2-9=0 ② とする。 y+3 を利用する x ため, x=0 と x=0 の 場合に分けて考える。 3 PR

解決済み 回答数: 1
理科 中学生

Q. 中三理科 水圧  (2)の求め方がわかりません‪💧‬  教えてください❕🙏

透明な筒を用意し、 状態で水の中に沈めたところ、 図2の ようにゴム膜がへこんだ。 (1) ゴム膜がへこんだのは、水の重さによって生じる 圧力がはたらくからである。この圧力を何というか。 (2) 記述 (1) の圧力は、 物体に対してどのような向きから はたらくか。 図2 膜 水 (3) 図2の後、筒をさらに深く水に沈めると、ゴム膜のへこみぐあ いはどのようになると考えられるか。 2 水中の物体にはたらく力 は 3 本誌 > P.76 熱 > p.175~176 2 ある直方体を、空気中でばねばかりにぶら下げて 測定したところ、2.5N を示した。次に、図のよ うに、底面の深さが10cmになるところまで水 の中に完全に沈めたところ、 ばねばかりは1.3N を示した。ただし、水1cmの質量を1g、質量 100gの物体にはたらく重力の大きさを1Nとし、 糸の体積や質量は考えないものとする。 (1) 水中で、直方体にはたらく浮力は何Nか。 ばねばかり 深さ 10cm (2) 底面の深さが10cmになるところまで水の 中に完全に沈めたとき、 直方体の上面と底面に 加わる水圧はそれぞれ何 Pa か。 5cm 4cm× 6cm (3) 記述 直方体をさらに深く水に沈めても、 直方体 が受ける浮力の大きさは、深さに関係なく一定 である。この理由を簡単に書きなさい。 3 物体の浮き沈み 本誌 > p.77 > p.175~176 A 同じ大きさと形をした木でできた物体A と鉄でできた物体Bがある。 図のように、 この2つを水中に入れると、Aは水に浮き、 Bは水に沈んだ。 B 水

未解決 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
1/156