学年

教科

質問の種類

数学 高校生

この問題わかる方いらっしゃいましたら教えていただけると嬉しいです🙇‍♂️

64 14 次のような街路の町の地図を見て、下の問いに答えよ。 ふもとに開きない。 Po Qo Q₁ Pi Q₁ P P Q2 時間 しかの とならない A B Q₁ TEOA PP Q5 GA (6] Q. (1)S地点からスタートしてA地点に行く最短経路は,分かれ道が3回ある中で左下を ア 回 右下を イ 回選ぶから, ウ | 通りある。同様に考えると,B地点に行く に起こると期待できる 最短経路も ウ通りあることがわかる。 (2)S地点からスタートしてC地点に行く最短経路を数える方法はいくつかある。一つの方法 は,4回ある分かれ道での進み方を考えるもので、この場合の数はCを計算することで 求められる。ほかにも, A地点を通る最短経路とB地点を通る最短経路をそれぞれ考えても キがC地点に行く 求めることができ, A地点とB地点それぞれを通る最短経路の数の 最短経路の場合の数であると言える。 下線部について, A地点を通る最短経路とB地点を通る最短経路に関する正しい記述は オ と カ である。 オ の解答群(解答の順序は問わない。) ⑩ A地点とB地点の両方を通るC地点までの最短経路が存在する。 ① A地点とB地点の両方を通るC地点までの最短経路は存在しない。 C地点までの最短経路は必ず A地点とB地点のどちらか一方を通る。 ③A地点とB地点のどちらも通らないC地点までの最短経路が存在する。 キ については,最も適当なものを,次の①~④のうちから一つ選べ。 ⑩ 和 ① 差 ②積 商 平均 C地点に行く最短経路は ク 通りある。

回答募集中 回答数: 0
数学 高校生

数A 組み合わせ カの問題がなぜ答えのようになるのかが分かりません。 教えていただけると嬉しいです!

8 以下は自然数, は以下の自然数とする。 次の先生と百まんさん に当てはまる記号や数式, 数字を とイヌワシ君の会話を読み、 答えよ。 大間 8 は解答欄に答のみを記入せよ。 先生:C の値をどのように考えたらいいと思う? 百まんさん: n個から0個とる組合せの総数なので0じゃないのかな。 イヌワシ君:まって, 確か。 Po=1,0!=1 と定めたはずだよ。 このことと, ア C, C,= 7! と表されることから,Co= イ と定め るといいんじゃないかな。 先生:その通り。 他の考え方もあり, 例えば6人から4人を選ぶことは, 選ば ない2人を決めることと同じなので, 6C4 = C2 の等式が成り立ちます。 一般に,n個から個取る組合せの総数は, n個から ウ個取る組 合せの総数と同じなので,nC=n = "q ・①の等式が成り立 (ウ) つ。 これより C の値は I と等しいと考えることが出来るので Cは(イ)と言えます。 百まんさん: ①の他にもCに関連する等式はありますか? 先生: 1 C, C,+C1-1 ・・② という等式が成り立ちます。 まんさん:例えばC=C+オ となるはずですね。確かめてみま す•••••• ほんとだ, 確かに両辺とも126になっています。 先生 ②の等式は次のように説明出来ます。 1.2.3.. +1のn+1枚 のカードから枚取る組合せを のカードに注目して、次の2つの 組合せのグループに分けます。 (A) 1 のカードを含んでいる組合せのグループ (B) のカードを含まない組合せのグループ (A) は カ通りあり、(B) はキ通りあります。 n+1枚のカードから枚取る組合せは必ず (A) か (B) のいずれかの グループに含まれているので,②の等式が成り立ちます。 イヌワシ君: なるほど。 この考え方を応用すれば新しい等式を作ることが出来 そうです。 を2以上の自然数として,n+2枚のカードからr枚 取る組合せを (A) 1 を含む組合せ (B) 1 を含まず 2 を含む組合せ (C) I も2も含まない組合せ に分類して考えると, 新しい等式が得られるのではないで しょうか。 先生 さすがイヌワシ君。 よく出来ました。

回答募集中 回答数: 0
数学 高校生

(1)(2)で同様に確からしいものが違うんですけど、それによって何が変わり、問題を解くのかわからないです。

118 道の確率 右図のような道があり, PからQまで最短経路で すすむことを考える.このとき,次の問いに答えよ. (1) 最短経路である1つの道を選ぶことが同様に確 からしいとして, R を通る確率を求めよ。 P R (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとき 精講 Rを通る確率を求めよ. (1) 題意は「仮にPからQまで道が5本あったとしたら,1つの道 を選ぶ確率は1/3」ということです. (2)題意は「ある交差点にきたとき,上または右を選ぶ確率がそれぞれ1/2」と いうことです. A =(BUA 解答 (1) PからQ まで行く最短経路は 4779 4! 3!1! -=4(通り) (4C1 でもよい) また,PからRまで行く最短経路は /→ 3! 31 2!1! -=3(通り) (3C1 でもよい) 211 ×1 RからQまで行く最短経路は1通りだから 104 PからRを通りQまで行く最短経路は 3×1=3(通り) ※通りたい点 いったん区切って 考える 3 よって, 求める確率は 4 (2)(1)より、題意をみたす経路は3本しかないことがわかる. ここで, A, B, C, D を右図のように定める. i) P→A→B→R とすすむ場合, 進路が2つある交差点はPのみ. よって,i)である確率は1/2 B R PCD

回答募集中 回答数: 0
1/12