学年

教科

質問の種類

数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1
数学 高校生

二枚目の赤丸のとこの考え方ってなんのために使ってるんですか?

1 数と式 1 式の値 太郎さんと花子さんは, 問題1と問題2について話している。 ア めよ。 チコに当てはまる数を求 こう解く! 問題 1 を求めよ。 2次方程式 4x+1=0 • ①の二つの解のうち、大きい方をするとき、2-4a+5の値 花子αは方程式 ①の解だから a²-4a+5 (a2-4a+1)+ とすると楽に計算できるよ。 太郎:αの値を求めてから4α+5 に代入すると計算が多くなりそうだね。 1 STEP 方程式の解の意味を押さえよ う 方程式の解は等式を成り立た せる値である。 ①の右辺が0 であることに着目して、求め る式を変形することを考える。 問題2 b= 35のとき、次の式の値を求めよ。 (1) 62+96+1 (2) 63+562+46 太郎: (26+3)イより,bは方程式 ー =0 の解だから (1) は 62+96+1=(62+ウ b+エ)+オ b ■カキ ■ク ■ケ と計算したよ。 (中略) 花子:私は,(2)で違う解き方をしたよ。 +b+エ=0から より 63= 6+ チ ......③ (2)の式に② ③を代入して計算したよ。 数と式 STEP 式の形に着目し, 構想を立て よう 「(bの1次式)=(平方根)」に 変形して両辺を平方すること で, STEP 1の考え方に帰着 できる。 太郎さんと花子さん の解法は少し異なるが,とも に求める式の次数を低くして いる。 No. 解答 問題1について x = q は, 方程式x4x+1=0の解であるから a²-4a+1=0 A が成り立つ。この式の利用を考えると a²-4a+5=(a²-4a+1)+4 B 問題2について =0+4=4 〔太郎さんの解き方〕 6=3+√5 より 2 CA xα 方程式 f(x) = 0 の解の とき B f(a)=0 α-4a+1のカタマリを作り出す。 26=-3+√5 26+3=√5 両辺を平方して (2b+3)=5 46+126+9=5 1 Date C 右辺が平方根だけになるように 変形する。 -3bt x 3: t

解決済み 回答数: 1
数学 高校生

調和級数の発散することについての証明の問題です。 ⑵でやりたいことは、Snがm/2+1より大きいから、右辺発散する→左辺の級数も発散するみたいにしたいからなのは分かります。n>=2^nと書くのではなく、nを2^nにおきかえるとと書いたらだめなんですか?

重要 例題 (1) すべての自然数nに対して、 (2) 無限級数1+1/2/2 1 3 k=1 k 1 n 45 無限級数1/n が発散することの証明 2 n 1/12 172 +1が成り立つことを証明せよ。 77 000 + +......+ -+...... は発散することを証明せよ。 基本 34. 重要 44 はさみう 分の公比) (1)数学的帰納法によって証明する。 (2) 数列 列{1} は0に収束するから、p.63 基本例題 34のように、p.61 基本事項2② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 2 とすると = ここで,m→∞のときn→∞となる。 2章 無限級数 [1] n=1のとき ① とする。 21 k=1k 数学II) =0 Crab とする。 k=1 (1)= +1 ...... 解答 的帰納法を利 も考えられる カード の計算 = 1+1/28-1/3+1 よって、 ① は成り立つ。 [2]n=m(m は自然数) のとき,①が成り立つと仮定すると1/21 このとき 2m+1 2m+1 1 + k=1 k k=1 k k=2+1k -xn -x ≥ -nx" (+1)+2+1+2+2 1 ++ 2m+1 x)S 1 m +1+ 1 + x" (1-x) 2 2m+1 2+2 +::::+ 2m+2m -x m 1 m+1 <2m+1=2".2=2+2" 1 ・+1+ •2m +1 2 2m+1 2 2m+k 2m+2m 2m+1 n+1) 2 ="+nx+1 (2)=21/2とおく。2" とすると, (1) から k →∞のときn→∞で ここで,m→ m 2 よって, n=m+1のときにも①は成り立つ。 (k=1, 2,..., 2"-1) [1], [2] から, すべての自然数nについて ① は成り立つ。 2m 1 m ・+1 k=1 k 2 →∞ lim +1=8 limSn=∞ 118 里 き、 したがっては発散する。 an≦bn liman=∞⇒limbn=∞ (p.343②) →∞ 8122 n=1n なら amil 無限級数1/n”の収束・発散について 数列{a} が 0 に収束しなければ,無限級数 2α7 は発散するが (p.61 基本事項2②), こ 検討 80 n=1 の逆は成立しない。 上の (2) においてlim=0であることから,このことが確認できる。 U 00+u n なお,2は>1のとき収束, p≦1のとき発散することが知られている。 (S) n=1 n' 二大] 練習 80 ④ 45 上の例題の結果を用いて,無限級数 は発散することを示せ。 p.81 EX 32 n=1 31\

解決済み 回答数: 1
数学 高校生

解説お願いします。 (2)の問題で、何が分からないかすら分からないくらい問題の意味がよく分からないです。 問題の意味と考え方を教えていただきたいです。 よろしくお願いします。

例題 342 標本平均の平均・ 標準偏差 (1)ある高校の男子の体重の平均は62kg,標準偏差は9kgである。この 高校の男子100人を無作為に選ぶとき,この100人の体重の平均 X の平 均と標準偏差を求めよ。 (2)ある母集団から復元抽出された大きさ3の標本の変量が X1,X2,X であるとき 標本平均 X の平均と標準偏差 を求めよ。 ただし, X, の確率分布は,右の表 X -1 P 0 212 112 14 12 16 思考プロセス E(X)=m (X) 6 √n この通りとする。 公式の利用 母集団」 母平均m O 母標準偏差 0 ※水 無作為 抽出 [標本平均の平均E(X) 【標本平均の標準偏差 (X) 標本 ... → 標本平均 X = Xi+X2+... +Xn n 個 Action» 標本平均の平均は、母平均と同じであることを用いよ 解 (1) 母平均m=62, 母標準偏差 = 9, 標本の大きさ n = 100 より 合 9 E(X) = m = 62, o(X) = 9 100 10 (2) 母平均m,母標準偏差は m=E(X1)=(-1)・ 1 +0. +1・ +2・ 1 6 = 4 2 12 E(X12)=(-1)2. 1 6 4 +02. +12 +22. 12 1 1 2 = 1 VaR.Ch 610 よって o=o(X)=√E(X2)-{E(X)} E(X)= =m= = 1 2 6(X) = 0 √√3 1 = 1. 2 12 標本の大きさ, 母標準 偏差のとき, 標本平均 X の標準偏差は o(X)= = n = √3 == 標本の変量を X1, X2, ..., Xm とすると E(Xi) = E(X2)= =... =E(Xm)=m =... 2 o(X)=6 (X2)= =o(X)=0 V(X)=E(X2){E(X) √√3 2 √3 2 標本の大きさ n=3 342 (1) ある高校の女子のソフトボール投げの平均は31.5m,標準偏差は7.2mで ある。この高校の女子 144 人を無作為に選ぶとき、この144 人のソフトボー ル投げの平均 X の平均と標準偏差を求めよ。 (2)ある母集団から復元抽出された大きさ 4の標本の変量がX1,X2, Xs, Xi であるとき,標本平均 X の平均と標準偏差を求めよ。 ただし,X, の確率分布は,右の表の通りとする。 X1 1 2 2 P 10 510 3 310

解決済み 回答数: 1
数学 高校生

nは奇数であるから8でわったあまりが偶数になることはないってどういうことですか??

LO は3で割り切れ P.544 基本事項 演習 例題 132 合同式を利用した証明 (2) [千葉大 ] n 使用して証明してみ または2ということ 二、 次のようになる。 ■2 (mod3) のとき の倍数である。 は120 は奇数とする。このとき,次のことを証明せよ。 12-18の倍数である。 (3) (2) は3の倍数である。 演習 131 指針 明 決まった数の割り算 (倍数)の問題では合同式の利用による解答を示す。 (1)は法8の合同式を利用し、(2)は法3の合同式を利用することはわかるが,(3)を 法 120 の合同式利用で進めるのは非現実的。 そこで (1),(2)(3)のヒント に従って考えると n-n=n(n2+1) (n2-1) (2)から、3の倍数→↑↑ は8×3=24 の倍数 L (1) から, 8の倍数 120÷24=5であるから後はn-nが5の倍数であることを示せばよい。 煩雑になるので, 解答 13) は省略した。 し (1) n は奇数であるから, 8で割った余りが偶 数になることはない。 ゆえに n 1 3 5 7 n² 1 9=1 25=1 49=1 n=1,3,5,7(mod8) のように最 n2-10 0 0 0 このとき,右の表から 断っておくこと。 n2-1=0(mod 8 ) よって, nが奇数のとき,2-1は8の倍数である。 (2)=0,12(mod3) のと n 0 1 -= 1 (mod3) き右の表から n5 0 15 1 25=2 2||| =1 (mod 3 ) n-n=0 (mod3) n5-n 0 0 0 条件では, nは奇数であ (mod m), (3) n-n=n(n+1)(n²-1) よって, n-nは3の倍数で ある。 るが, すべての整数nに ついて, nnは3の倍 数である。

解決済み 回答数: 1
数学 高校生

次の(3)の問題で左下の青線は絶対値をつけたまま計算していますが何故絶対値をつけて考えるのでしょうか?もう一つな右下の青線で何故2πを出すのでしょうか?どなたか解説お願いします🙇‍♂️

1 Z1 = 2 √3 2 + i, Z2 = 1 + i のとき,次の複素数を極形式で表せ。ただ し、偏角0 の範囲は0≤0<2 とする。 21 (1)2122 (3)122 22 思考プロセス (1)「積を計算 → 極形式」 の順で考えると・・・ √3 +1 √3-1 2122=- ・+ i ← 偏角を求めにくい。 2 2 「極形式で表す ← 公式の利用 「積を計算」 の順で考えると [21=1(cosb1+isin Oi) 積 2122= rir2{cos(01+02) +isin(01+02)} 積 ・和 122=r2(cos02+isin (2) 21 r1 商 -{cos (01-02)+isin (01-02)} 22 12 ・差 商 Action》 複素数の積 (商) は, 絶対値の積 (商) と偏角の和 (差) を求めよ 2 2 解 21 COS +isin⋅ T, -π, 22 = √2 (cos / π π 4 +isin 7 ) より [Z1, 22 をそれぞれ極形式 で表す。 | 21 | = 1, |22| = √2, arg21 = 2 -π, argz2 = H4 22 = √√2 (+) (1) |182|=|21||22| 2 11 = √2, arg2122 = arg21 + arg2 = π 十 12 3 4 12 よって Z122=2cos √ 11 12 π+isin1/12) 21 21 2 21 5 (2) = う arg. = arg21 arg22= πT 22 22 2 22 12 4 23 5 12 21 よって = √2 5 COS 5 y π十isin 22 12 12π 2 8 (3) 21 = = 1, argz₁ = argz₁ = 1/2であるから 3 N 5 21 22 = 21 ||22|=√2, arg2122 = arg 1+argz2 = π 12 ■偏角 0 は 0≦0<2πで 考えるから Z1 Z2 の偏角 よって 2122= √2(cos 19 19 π+isin π 12 12 5 は 12+2x= 19 π 12 9-2

解決済み 回答数: 1
1/31