学年

教科

質問の種類

物理 高校生

(2)のよって、の後の計算がなかなか合わないです。 途中式込で教えて頂きたいです🙇🏻‍♀️

が,密度P の水中にその下側 1/3 の高さだ け水に入った状態で浮かんでいる。 チェック問題 3 水圧と浮力 x 右図のように、底面積Sで高さんの箱 h 標準 S h 箱 . 6 分 体 (X) この箱の質量m をP*, h, Sで表せ。 (2) ここで,この箱の下に質量 M, 体積V のおもりを軽い細いひもでつり下げると き箱がさらに沈む距離 x を M, V, P水, S P* 3 で表せ。ただし,箱はすべて沈んでしまわないものとする。 解説 (1)に着目して力を書き込む。 図 aでアルキメデスの原理より、箱は水を体 積Sだけ押しのけているので、浮力の大 Sh h きさは、PgSxgとなる。重力と浮力の 力のつり合いの式より, h mg=PxSg... m=phs h JP⭑Sg 3 mg 図 a (2) 箱とおもり全体に着目して力を書き込む。 図bでアルキメデスの原理より,箱とおも 浮力 P* ( 1½/1 + x) S g 3 -xsg りを合わせて体積 ( 2 + x S + Vだけ水を xs+ 押しのけているので、浮力の合計は, h mg P水 Px{(½ +x) S + V}g となる。 浮力 PVg 箱とおもり全体に着目した力のつり合い Mg の式より, mg + Mg = P x { (1/1 + x) S + V }g 3 M V 図 b h 全体に着目しているので, よって,x= P⭑S S (①式を代入した)……・・・答 糸の張力は考えなくてよい

回答募集中 回答数: 0
数学 高校生

212. このような記述でも問題ないですかね?? 0<h<aは書いていないですが問題ないですよね? (r^2=a^2-h^2は書いていてr,a,hは当然全て>0なのだから同様のことは言えていると思いました。)

330 00000 基本例題 212 最大・最小の文章題(微分利用) 類 群馬大 半径aの球に内接する円柱の体積の最大値を求めよ。 また,そのときの円柱の高 基本 211 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 AM-* ① 変数を決め、その変域を調べる。 [②]最大値を求める量(ここでは円柱の体積), 変数の式で表す。 ③3 ②2 の関数の最大値を求める。なお,この問題では、求める量が,変数の3次式で表 されるから,最大値を求めるのに導関数を用いて増減を調べる。 無 なお,直ちに1つの文字で表すことは難しいから,わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 ならば、方程式 #SEN 計算がらくになるように 2h とする。 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=a²-h² 0 <2h<2aから 0<h<a Fo 円柱の体積を Vとすると V=лr² 2h=2(a²-h²)h =-2π(h-a²h) Vをんで微分すると V'=-2π (3h²-α²) =-2π(√3h+a)(√√3 h-a) 0くん <a において, V'=0となる a =1/3のときである。 のは,h= ゆえに,0くん<a におけるVの増 減表は,右のようになる。 したがって, V はん= a √3 よって体積の最大値 次回数でも学んだ h V' 2T V 4√3 9 のとき最大となる。 9-m- 0 ... h= a =1/3のとき,円柱の高さは 2 - 2√3 √3 a 3 -ла³, そのときの円柱の高さ 23 3 a *** 2x(a²-3).-4√3 a /3 9 + a √√3 0 極大 練習 ②212 底面の半径,および側面積を求めよ。 [R a 半径1の球に内接する直円錐で, その側面積が最大 三平方の定理=y(1) 変数の変域を確認。 atla31 82x25- [S- (円柱の体積) = (底面積)×(高さ) dV dh をV' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後,本書の増減表は,こ の方針で書く。 12h 12π(a²-h²)h に対し, その高さ,

回答募集中 回答数: 0
数学 高校生

このh=√21/7のhってどの部分ですか?

内(2) CD の EM を取り 正三角 (3) 0°< よって sin0=√1-cos' sin />0であるから AAEM= AE AM sin 0 2 = -1/2-2√7-3√/3/15 S= /21 5 = √1-(√²1)² = √15 6 3√ 35 2 1辺の長さが3の正三角形ABCを底面とし, PA=PB=PC=2 の四面体PABCにおいて頂 練習 170 点P から底面ABCに垂線PHを下ろす。 (1) PHの長さを求めよ。 (2) 四面体 PABC の体積を求めよ。 (3) 点Hから3点P, A, B を通る平面に下ろした垂線の長さんを求めよ。 P (1) APAH, △PBH, APCH はいずれ も∠H=90°の直角三角形であり PA=PB=PC, PHは共通 であるから よって AH=BH=CH A ゆえに,Hは△ABCの外接円の中心であり, AHは△ABC の外接円の半径であるから, △ABCにおいて, 正弦定理によ 3 り =2AH sin 60° APAH=APBH=APCH 3 よって 3 √3 AH= 3 2sin 60° 2 2 ÷ =√3 △PAH は直角三角形であるから, 三平方の定理により PH=√PA²-AH²=√22-(√3)=1 (2) 正三角形ABCの面積をSとすると 9 √3 3.3 sin 60° 2 2 2 よって,四面体 PABC の体積を Vとすると DAV= =1/23・S・PH= 1.9√3 4 • 6 ・1= 9√3 4 3√3 4 H B ←正弦定理により AB =2R sin 60° Rは△ABCの外接円の 半径で, R=AH である。 ←四面体PABCは三角 であり、 体積は 1/3×(底面積)×(高さ) で求められる。△ABC を底面とすると, 高さは PH。 4章 練習 [図形と計量]

未解決 回答数: 0
数学 高校生

黄色の部分が分かりません。 どういう計算をしたら、a/√3になりますか?

(3) 指針 解答 (1) 直線 AHは AH⊥BH. AHIC】 ここで,直角三角形 ABH に注目す よって まず BH を求める。 また、BHは正三角形 BCD の外接円の半径であるから ********** (2) (四面体の体積)=121×(底面積)×(高さ) (3) △ABCを底面とする四面体 HABC の高さとして求める。 また, 3つの四面体 HABC, HACD, HABD の体積は等しいことも利用。 (1) AABH, AACH, AADH はいずれも <H=90°の直角三 角形であり AB=AC=AD, AH は共通 であるから △ABH≡△ACH ≡△ADH a sin 60° a よって BH= 2sin 60° △ABHは直角三角形であるから, 三平方の定理により h=AH=√AB2-BH2 2 よって BH=CH=DH ゆえに,Hは△BCD の外接円の中心であり, BH は ABCD の外接円の半径であるから, ABCD において, 正弦定理により -=2BH √3 a - 2 2 B q². (2) ABCDの面積をSとすると √√3 P=. -a² S= =1/12/asin60° 4 2 √ ²3²a²=16 == -a². よって,正四面体 ABCD の体積Vは √6 A a √√3 H a= √2 V=1/sh=1/13.11.16 12 - a³ 4 a D B ◆直角三角形において, a a /3 辺と他の1辺がそれぞれ 等しいならば互いに合同 である。 A ■H は ABCD の外心。 コ H (数学Aで詳しく学ぶ) 亀剣 検討 (1)の なお 「 ABCD は正三角形であ り 1辺の長さは4, 1つ の内角は 60° である。 重心の 正三 (ABCDの面積) =1/2BC・BD sin CBD

未解決 回答数: 0
1/14