数学
高校生

黄色の部分が分かりません。
どういう計算をしたら、a/√3になりますか?

(3) 指針 解答 (1) 直線 AHは AH⊥BH. AHIC】 ここで,直角三角形 ABH に注目す よって まず BH を求める。 また、BHは正三角形 BCD の外接円の半径であるから ********** (2) (四面体の体積)=121×(底面積)×(高さ) (3) △ABCを底面とする四面体 HABC の高さとして求める。 また, 3つの四面体 HABC, HACD, HABD の体積は等しいことも利用。 (1) AABH, AACH, AADH はいずれも <H=90°の直角三 角形であり AB=AC=AD, AH は共通 であるから △ABH≡△ACH ≡△ADH a sin 60° a よって BH= 2sin 60° △ABHは直角三角形であるから, 三平方の定理により h=AH=√AB2-BH2 2 よって BH=CH=DH ゆえに,Hは△BCD の外接円の中心であり, BH は ABCD の外接円の半径であるから, ABCD において, 正弦定理により -=2BH √3 a - 2 2 B q². (2) ABCDの面積をSとすると √√3 P=. -a² S= =1/12/asin60° 4 2 √ ²3²a²=16 == -a². よって,正四面体 ABCD の体積Vは √6 A a √√3 H a= √2 V=1/sh=1/13.11.16 12 - a³ 4 a D B ◆直角三角形において, a a /3 辺と他の1辺がそれぞれ 等しいならば互いに合同 である。 A ■H は ABCD の外心。 コ H (数学Aで詳しく学ぶ) 亀剣 検討 (1)の なお 「 ABCD は正三角形であ り 1辺の長さは4, 1つ の内角は 60° である。 重心の 正三 (ABCDの面積) =1/2BC・BD sin CBD

回答

まだ回答がありません。

疑問は解決しましたか?