学年

教科

質問の種類

数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

1番は体積の最小値を求める問題 2番は表面積の最小値を求める問題です ここで,xとrで置いてる部分ってなぜそこをxとrでおいてるんですか?

7) a このとき, 直線 ①と両座標軸との交点の座標 (2,0), (0,2b)であり,Sの最小値は2 る。 184 ■指針 2ab Ta (1) 球の中心を通り、底面に垂直な平面で 円錐を切ってできる切り口の三角形を考え る。 円錐の頂点と球の中心の距離をxとし 円錐の体積をxを用いて表す。 (2)表面積を体積を表す式で表すことができ (1)の結果が利用できる。 (1) 球の中心を0とし, 0を通り底面に垂直な 平面で直円錐を切って できる切り口の三角形 を △ABC とする。 A x ... ア 3r dV 0 dx V 583 + よって,Vは x=3rで最小値 / ara をとる。 別解 [②までは,本解と同じ] (x+r2=(x-r)2+4rx であるから V= =(x-r2+4mx-r) +42 x²(x+r)² 3(x-r) ar2 (x-r2+4nx-r) +42 3 x-r 2 == (x-r) + 4r2 3 +4rs x-r また, 球の切り口の円 D との接点を図のように D, E とする。 0 OA = x とすると, x はより大きいすべて の実数をとりうる。 V≧ B ① より xr>0であるから,相加平均と相乗平 均の大小関係により 123 (2√√(x-7). Ar²+4)=3 472 8 x-r E 881 4r2 等号が成り立つのは,x-r= すなわち x-r よってxr △ABE △AOD であるから BE:r=(x+r): √x2-22 BE: OD=AE: AD すなわち よって ゆえに BE= √√x²-72 BE√x2=(x+r) (x+r) 直円錐の体積をVとすると (x-r2=4r2 のときである。 xr>0であるから よって x=3r x-r=2r ゆえに,Vはx=3yで最小値 / ara をとる。 T (2)直円錐の表面積を S とすると S=7. BE² DES +1/2AB AB 2TBE 2π BE V=BE². AE =BE (BE+AB) 0= AB、 ここで, mx+r) 2 (x+r) BE: OD=AB: AO 2 y2(x+2)2 = 3(x-r) dV dx 3 [側面の展開図] であるから -> (x>r) 22(x+r)(x-1)(x+r2.1 AO AB= ・BE OD よってAB=BE (x-2)² r ゆえにS=BEBE+BE)=xBE (1+-) r 2(x+r)(x-3) 3(x-r2 xにおいて, dv = 0 とすると x=3y dx ①の範囲におけるVの増減表は次のようになる r(x+r) 2 =π Tr(x+1)² 3. x-r r (+1) (1) から, Sはx=3rで最小値 をとる。 38 r 18 . TY r² = 8 x²

未解決 回答数: 1
1/295