学年

教科

質問の種類

物理 高校生

これ基底状態から第一励起状態になるときk格からL格に電子が1つ移ることで電子同士の斥力でなんかすごいことになったりしないんですか?

594. フランク・ヘルツの実験 解答 (1) 解説を参照 (2) 2.5 指針 加速された電子の運動エネルギーが, 水銀原子の基底状態と, 最もエネルギーの低い励起状態とのエネルギー差に等しくなるとき, 原 子内の電子を励起し、エネルギーを失う。 エネルギー差に等しくないと きは、原子内の電子を励起できず, エネルギーを失わない。 解説 (1) FG間の電位差で加速された電子は,その運動エネル ギーが小さいとき, 水銀原子に衝突しても, 原子内の電子を励起でき ないので,途中でエネルギーを失うことなくPに達する。 しかし, 加 速した電子のエネルギーが, 水銀原子の基底状態と, 最もエネルギー の低い励起状態とのエネルギー差に等しくなると,電子は,水銀原子 内の電子を励起し, エネルギーを失う。 このため,電子は, Gよりも わずかに電位の低いPに到達できなくなり、 電流計に流れる電流が減 少する。 さらに電位差Vを大きくすると,やがて電子のエネルギーは, 2回目の励起によって失われ、 再び電流が減少する。 このようにして, 電流は,増加・減少を繰り返す (図)。 (2) 電位差Vが4.9V 大きくなるたびに、電流は減少を繰り返すため. 水銀原子のエネルギー準位の差は 4.9eV である。 また, 観測される紫 外線は, 励起された水銀原子内の電子が基底状態にもどるときに放出 される光子であり, 4.9eVのエネルギーをもつ。 プランク定数をん, 電気素量をe, 光速を c, 紫外線の波長を入とする と. eV= 入について整理し, 各数値を代入すると, i= hc eV = hc 入 ( 6.6×10-34) × ( 3.0×10) (1.6×10-19)×4.9 = 2.52×10-7m 2.5×10-7m 理 C

回答募集中 回答数: 0
生物 高校生

生物 下の写真が問題です。 問題用紙に書き込みがあり文字打ちとグラフ作成等を自分でしてしまったので少し見づらいかもしれません。すみません 【問】 この実験結果によって, マウス小腸上皮細胞におけるグルコース輸送に必要であることが示されたタンパク質a〜cのうち、粘膜側、基... 続きを読む

細胞膜での物質の輸送にかかわるタンパク質には、ポンプ, チャネル, 輸送体などがある。 このうち輸送体は目的物質の濃度勾配に したがった輸送を行うが、 中には特定のイオンの濃度差を利用してイオンと目的物質を同時に輸送することで二次的な能動輸送を 行うものもある。 後者のような輸送体は共役輸送体とよばれる。 消化管内のグルコースは、小腸の上皮細胞の粘膜側の輸送体により細胞内に取りこまれ,次いで基底膜側の輸送体によって基底膜側の 細胞外へ放出される。 マウスの小腸におけるグルコースの輸送のしくみを調べるため、以下のような実験を行った。 【実験】 マウスの小腸を取り出し, 約 4cmの長さに切断した。 傷つけないように注意しながら腸を裏返し, 粘膜側が外側, 腸の外側だった側が 内側になるようにした。 一方の端を糸でしばった後, 内部に10ミリ mol/Lのグルコースを含むリンガー液 (内部液とする) を満たし, もう一方の端も糸でしばった。 これを10ミリ mol/Lのグルコースを含むリンガー液 (外部液とする) 中におき, 容器をゆっくり揺ら し、かつエアポンプで空気を与えながら37°Cで90分間培養した。 小腸上皮細胞の基底膜側から放出されたグルコースは、その下の 結合組織を通り抜けて内部液に放出される。 実験には2種類のリンガー液A,Bを用いた。 (【成分】参照) リンガー液Bはグルコースの輸送に影響を与えない他の物質で浸透圧がリンガー液Aと同一になるように補ってある。 【表】のよ うに外部液と内部液に用いる液を変えた四つの実験を行い, 培養後に外部液と内部液を回収してグルコース濃度を測定したところ 【結果】 のような結果になった。 なお,試薬Uはナトリウムポンプの阻害剤である。

回答募集中 回答数: 0
数学 高校生

数学B青チャートの問題です 解説は理解しているのですが、この問題を斜交座標で解いてみたくてどうやるのか教えてください! 斜交座標と長さが相性が悪いのは分かっていますが、斜交座標で解けそうな気がして気になっちゃいました 解決のヒントになれば良いのですが、|2a-b|=1と|a... 続きを読む

410 00000 重要 例題 19 ベクトルの不等式の証明 (2) 平面上のベクトルa, T が |2a+6=1, |a-36|=1 を満たすように動くとき, 3 · ≤lã+õ|≤· 5号となることを証明せよ。 7 重要 18 指針「条件を扱いやすくするために 20+6=p, a-36=d とおくと、与えられた条件は ||=1, ||=1 となる。 そこで, a +6 を p, g で表して, まず la +6 のとりうる値の範 囲について考える。 la +部は -g を含む式になるから, p.409 重要例題 18 (1) で示した不等式 -|pl|g|pqs|pl|al を活用する。 CHARTとして扱う 解答 2a+b=p ①, a-3=q ② とおく。 (①x3+②)÷7, (①-② ×2)÷7 から a=¾b+79, b=46-¾à よって、a+b=11で、ほ==1であるから |ã + b³²=|¾ß——à³² = 1 (16|5³²—8p•à+|q³²³) 17 8 →→ 49 49 p.q Deze, -pilg|≤p·g≤lpilg|, |p|=|9|=1TB3D³5 = -1≤p.q≤1 17 121, 1-8 slá+b³≤ 17 + 8 + sla+of≤ 25 ゆえに, 49 49 49 49 3 したがって // s≤|ã+b|s- 7 別解](上の解答3行目までは同じ) a+6=11/19より.7(+6)=4D-dであるから, 不等式 |a|-|6|≦ la +6≦|a|+|6|を利用すると |4p|-|-g|≤|4p+(−q)| ≤|4p|+|−ģ| 4|6|-|g|≡|4p-g|4|5|+|g| よって |l=||=1であるから 3≤14p-q|≤5 ゆえに 3≤|7(ã+6)|≤5 ¢*b5 ¾/7/slā+615 2/1/20 €19 3 121 <a, bの連立方程式 [2a+b=p la-3b=g を解く要領。 35 -sä·bs- となることを証明せよ。 121 ◄ ½(¹ñ−ā)·(¹ñ−ā) 等号は と が反対 の向きのとき, 右の等号は とが同じ向きのとき. それぞれ成立。 平面上のベクトルa, F が \54-25|=1, |20-36|=1を満たすように動くとき. p.409 重要例題 18 (2) で示 した不等式。 a の代わりに 4 を の代わりに を代入 *

回答募集中 回答数: 0
数学 高校生

数学B青チャートの問題です 解説は理解しているのですが、この問題を斜交座標で解いてみたくてどうやるのか教えてください! 斜交座標と長さが相性が悪いのは分かっていますが、斜交座標で解けそうな気がして気になっちゃいました 解決のヒントになれば良いのですが、|2a-b|=1と|a... 続きを読む

410 重要 例題 19 ベクトルの不等式の証明 (2) 平面上のベクトルα, F が |2a+6=1, |a-36|=1を満たすように動くとき, 3 2 +6=0 となることを証明せよ。 | 7 重要 18 指針>>条件を扱いやすくするために 2a+b=b, a-36=d とおくと、与えられた条件は |p|=1, ||=1 となる。 そこで, a +6 を p, gで表して,まず la + 6P のとりうる値の範 囲について考える。 la+部はpg を含む式になるから, p.409 重要例題 18 (1) で示した不等式 -|||g|≤p·g≤|ø||g| を活用する。 CHART はとして扱う 解答 2a+b=p ①, a-36=q.. (①x3+②)÷7, (①-② ×2)÷7から ä=¾/b+¾â, ô=—ô-½ å 7 -212/20ID=||=1であるから |ã + b³²= | ¼ ñ——— ã³² = 1 (16|B³²—8p•à+lā³²) ◄(4B¬ā)·(4ñ—ā) ..... よって、a+b= = 1785-9 g 49 49 ② とおく。 ここで,-|pigsp.gs|pig, pl=||=1であるから -1≤p.q≤1 8 25 vožk, 17-3 slä+b³s 17 + 8 +5 ≤lä+óf≤ ²5 ゆえに, から 49 49 49 49 49 したがって -≤|ã+b|≤· 別解](上の解答3行目までは同じ) +6=4-212/10より.7(+6) =4-1であるから 不等式 101-16|≦10+6≦|a| +16を利用すると 3 141-1-q1145+(-a)| ≤|4p|+|-gál 4|p|-|g|≦\4p-g|≦4|p|+|g| よって |l=||=1 であるから 3≤|4p-q|≤5 ゆえに 3≤|7(ã+6)|≤5 **b5/sa+b√5 /1/20 5 sla+bls. <a b の連立方程式 2a+b=p la-36=g を解く要領。 等号は が反対 の向きのとき,右の等号は とが同じ向きのとき, それぞれ成立。 <p.409 重要例題 18 (2)で示 した不等式。 a の代わりに -4 4を の代わりに を代入。

回答募集中 回答数: 0
1/3