学年

教科

質問の種類

数学 高校生

オカキなのですが、合同でない△ABCが2つ存在しの所の意味がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

1 TEAB=4AB-12:0、AB'+4AB44:0 19 難易度 ★★ 1+4 4 目標解答時間 9分 90 SELECT SELECT 60 (1)△ABCにおいて,∠A=60°, AC = 4 とする。辺BCの長さに対する△ABC の形状や性質 次の(i)(ii)の場合について考えよう。 (i) BC=2√3 のとき, AB=| アムであり、△ABCはイである。 (ii) BC4のとき, AB=ウであり,△ABCは エである。 A 60° 4 イ エ ] の解答群(同じものを繰り返し選んでもよい。) B C ⑩ 正三角形 ①直角三角形 ②鈍角三角形 (iii) BC= オ のとき, 合同でない△ABCが二つ存在し, それぞれ △ABC, △ABC とす sin∠ABC= cos AB₁C= キ である。 オ については,最も適当なものを、次の①~③のうちから一つ選べ。 √7 /11 ② 15 √19 カ キ の解答群(同じものを繰り返し選んでもよい。) sin∠ABC ① -sin∠AB2C COS ∠ABC (3) - cos AB₂ C (2)△ABCにおいて, ∠A=40°, BC = 7, AC=x とする。 △ABC が存在するようにしながら、xの値を増加させると, sin B の値は ク これにより、xの値のうちで最大のものは ケ である。 また, 合同でない △ABC が二 在するxのとり得る値の範囲は, コ <x< である。 ク の解答群 増加する 変化しない ① 減少する ②増加することも減少することもある ケ コ ラ サ の解答群 (同じものを繰り返し選んでもよい。 ) 7 sin 40° ① 7sin 40° 14 sin 40° sin 40° 7 14 7 14 sin 40° sin 40° 16+AB2-2/4.AB・(土)=16 AB2+4AB=0 AB(AB+4)=0 (配点 (公式・解法集 21 22

解決済み 回答数: 2
数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0
1/6