学年

教科

質問の種類

数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

数学1aです。確率です。教えてください。

上が有理数 第3問 (選択問題) (配点 20) (1)1回目の試行について考える。 IA イウ 太郎さんと花子さんは、図のように、階段の手前 (0段目)にいる。 2人は,1, 2,3の数が一つずつ書かれた合計3個の球が入っている袋を一つずつ持っており, 下の手順1から手順3を行う。 太郎さんが1段目にいる確率は ア である。 イ また,太郎さんが3段目にいる確率は ウ である。 I 7段目 6段目 5段目 4段目 3段目 段を上がらない確率を P(0) とする。 (2) 試行を2回繰り返す。 以下、1回の試行で太郎さんが N段 (N= 1, 2, 3) 上がる確率を P(N) とし,階 2段目 1段目 (i) 太郎さんが6段目にいる確率は オ である。 (n) 太郎さんが5段目にいる確率は2× カ である。 () 太郎さんが4段目にいる確率は2× キ +1 ク である。 次の手順1から手順3までを1回の試行とする。 手順1 太郎さんと花子さんは自分の持っている袋からそれぞれ無作為に球を 1個取り出し, 球に書かれた数を確認する。 手順2 次のようなルールにしたがって階段を上がる。 ルール ・2人がそれぞれ取り出した球に書かれた数が異なる場合 オ カ の解答群 (同じものを繰り返し選んでもよい。) ⑩P(2) × P(2) P(3) xP(3) ②P(2) XP(3) 大きい数が書かれた球を取り出した方が, その球に書かれた数だけ階 段を上がる。 キ ク の解答群 (同じものを繰り返し選んでもよい。) ⑩P(1) xP(2) ①P(1) xP(3) ②P(2) XP(2) ・2人がそれぞれ取り出した球に書かれた数が同じ場合 2人とも階段を1段上がる。 手順3 それぞれ自分の袋に球を戻す。 また、2回の試行の後,太郎さんが3段目にいるとき 1回目の試行で太郎さ ケ (数学Ⅰ・数学A 第3問は次ページに続く。) んが3段目にいた条件付き確率は である。 コ (第2回-13) (第2回-14) (数学Ⅰ・数学A 第3問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

どうして2回の試行を行っているのに反復試行を使っていないのでしょうか?あと、(2)の確率分布表のPが3/1になるのはどうしてですか? 解説お願いします🙇

10箱の中に1から3までの数字を書いた球がそれぞれ1個ずつ、計3個入っている。 この箱の中から1個の球を取り出すことを2回行う。 (1)1回目に取り出した球を元に戻して2回目を取り出す場合 1回目、2回目に取り出した球に書かれた数字をそれぞれX 023 とする。x=2 11 ア ウ X=1 となる確率はP(X=1- Y=2 となる確率はP(Y=2)= であり, イ I オ X=1 かつ Y = 2 となる確率はP(X=1, Y=20) = である。 また、確率変数Xとは キ 12 23 7x344 2x = +5x= キ に適するものを、次の① ② のうちから一つ選べ。 ① 独立である 独立でない 1+2+3 このとき, X, XY の期待値 (平均) はそれぞれE(X) E(XY= であり, X, X+Y の分散はそれぞれV(X) V(X+1)= ス である。 1/123 (12) +2x3+5% 14449-4 (1-2)/32+(2-2-2)^(1/3 +1/+1 (2)1回目に取り出した球を元に戻さずに2回目を取り出す場合 1回目, 2 回目に取り出した球に書かれた数字をそれぞれ X', Y' とする。 X' = 1 となる事象を A, Y' =2となる事象をBとすると, セである。 また,E(XY)である。 ①②③ セ の解答群 123 α=1,A M Y=2B (1/2) ( WF 14 ① 事象A と事象 Bは独立 2 事象 A と事象 Bは従属 ソ に適するものを、次の①~③のうちから一つ選べ。 ② ~ P(A) = P(x-1)=1 / PBB) = Pα==== P13 2+216 ③ 36計 x12361

回答募集中 回答数: 0