学年

教科

質問の種類

数学 高校生

これ答え間違っていますよね。右のようにといたんですけど、答えが違います。 3枚目の解き方を参考にしました。 もし答えがあってるなら、この簡単な解き方で、どう解くのか教えてください。明日テストなので、お願いいたします。

17:00 × すなわち この古鶏10 y=(2a-3)x-α² 2/3 -4) を通るから 2- 解答 OM= M = a + ²/6+²/²/² -3)-3-a² 1²-6a+5=0 これを解いて a=1.5 a=1のとき 接点の座標は (1,-2) , 接線の方程式はy=-x-1 a=5のとき 接点の座標は (5,10) で, 接線の方程式はy=7x-25 圏 接線 y=-x-1, 接点 (1,-2) または 接線 y=7x-25, 接点 (5,10) = sa+to+(1-s)c ...... 2 ①, ② から ha+ho+2hc=sa+to+(1-s) c 4点 0, A, B, C は同じ平面上にないから h=s, h=t, 2h=1-s よって2h=1h ゆえにん 1116+60 a + 3b .b 3 したがって OM=21234+- 12 平行六面体OADB-CEGF において, 辺 DG のGを越える延長上に DG=GH となるよ うに点Hをとり,直線OH と平面 AFCの交点を M とする。 OA=a, OB=b, OC= とするとき, OM を a, b,c を用いて表せ。 OH = OA+AD + DH = a +6+2c Mは直線OH上にあるから, OM=hOH となる実数んがある。 よって OM=(a+6+2c)=ha+hb+2hc ...... ① また,Mは平面 AFC 上にあるから, CM = sCA + ICF となる実数 s, tがある。 ゆえに OM=OC+CM=c+sa-c)+tb → 13 四面体 ABCD において、次のことを証明せよ。 AB⊥CD, AC⊥BD ならば ADIBC 解答 AB=1, AC =c, AD とすると 山 CD=d-c, BD=d-b, BC=c-b ABLCD 5bd-c)=0 よって b.d=b.c ① AC⊥BD から cd_b) = o c.d=b.c ...... (2) 10 (a, a²-3a) ****** よって ①② から AD.BC=d.c-b) d.-d.b ml 5G 61 (3, -4) x |16|

回答募集中 回答数: 0
数学 高校生

赤線で囲った部分は要するに何を言ってるんですか? それと、赤線で囲ったところの上の式変形、どういう思考回路で出てくるんですか?

た接線 基本 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 x2 田線の接線 q² + y² (②2) 曲線x=et, y=et のt=1に対応する点 Q ttel, a>0, b>0 基本 81 める。 7/2 20 ((1) 楕円 指針 「解答」 (1) 両辺をxで微分し,y'′ を求める。 -=1上の点P(x1, y1) 62 2²2 +22²2 62 接線の傾き=微分係数 まず, 接線の傾きを求める。 dy dt dy dx dx dt y-Vi=- よって =1の両辺をxについて微分すると 2x 2y ゆえに,y=0のときy= 62x a² 62 a'y よって,点Pにおける接線の方程式は,y≠0 のとき 62x1 a²y₁ 点Pは楕円上の点であるから (2) th + •y'=0 dy dx = (2) dy dt dx dt X1X (x-x1) すなわち 2 a² 62 a² 62 y=0のとき, 接線の方程式は y=0のとき, x1 = ±α であり, 接線の方程式は これは ① で x = ±α, y=0 とすると得られる。 したがって 求める接線の方程式は (2) dx = e², dy = =et, dy=e-t²(-2t)=-2te-t² dt dt -2te-t² et + = + X₁² y₁² 2 q² 62 2 yiy x₁² y₁² + =1 X1X Viy 2 62 + t=1のとき de, 1/2) = -2/2 Q(e, dy == dx e² したがって 求める接線の方程式は -=1 [(2) 類 東京理科大 ] /p.142 基本事項 2. 基本 81 x1x yiy a² =-2te-t²-t + =1 62 を利用。 1 x=±α 2 ext y-1---²/(x-e) tah5 y=- すなわち 3 陰関数の導関数につい ては, p.136 を参照。 ただし, a>0 5 両辺に12/12 を掛ける。 傾き b²x₁ a²y₁ -a x=-a yA 3e10 | 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 83 _ (1) 双曲線x2-y2 = d² 上の点P(x1, y1) 0 2 YA b p.137 参照。 2539 O -b P(x1,y1) a x=a -y=-2²/x+³ Q(t=1) 153 EY70 4章 2接線と法線

回答募集中 回答数: 0