学年

教科

質問の種類

数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
数学 高校生

この問題わかる方いらっしゃいましたら教えていただけると嬉しいです🙇‍♂️

64 14 次のような街路の町の地図を見て、下の問いに答えよ。 ふもとに開きない。 Po Qo Q₁ Pi Q₁ P P Q2 時間 しかの とならない A B Q₁ TEOA PP Q5 GA (6] Q. (1)S地点からスタートしてA地点に行く最短経路は,分かれ道が3回ある中で左下を ア 回 右下を イ 回選ぶから, ウ | 通りある。同様に考えると,B地点に行く に起こると期待できる 最短経路も ウ通りあることがわかる。 (2)S地点からスタートしてC地点に行く最短経路を数える方法はいくつかある。一つの方法 は,4回ある分かれ道での進み方を考えるもので、この場合の数はCを計算することで 求められる。ほかにも, A地点を通る最短経路とB地点を通る最短経路をそれぞれ考えても キがC地点に行く 求めることができ, A地点とB地点それぞれを通る最短経路の数の 最短経路の場合の数であると言える。 下線部について, A地点を通る最短経路とB地点を通る最短経路に関する正しい記述は オ と カ である。 オ の解答群(解答の順序は問わない。) ⑩ A地点とB地点の両方を通るC地点までの最短経路が存在する。 ① A地点とB地点の両方を通るC地点までの最短経路は存在しない。 C地点までの最短経路は必ず A地点とB地点のどちらか一方を通る。 ③A地点とB地点のどちらも通らないC地点までの最短経路が存在する。 キ については,最も適当なものを,次の①~④のうちから一つ選べ。 ⑩ 和 ① 差 ②積 商 平均 C地点に行く最短経路は ク 通りある。

回答募集中 回答数: 0
数学 高校生

赤で囲っているところはなぜこうなるのですか?

00 本71 C) くる A=Q. 3+GC (00- 30G 針で = 0 基本 例題 31 線分の垂直に関する証明 00000 △ABCの重心を G, 外接円の中心を0とするとき, 次のことを示せ。 OA+OB+OC=OH である点Hをとると,Hは△ABCの垂心である。 (2)(1)の点に対して、3点O,G, Hは一直線上にあり GH=20G [類 山梨大 ] ・基本 25 基本 71 (1)三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交 点である。 AH 0, BC ≠0, BH = 0, CA ¥0 のとき AHBC, BHICA⇔AHBC=0, BH・CA=0 ...... A であるから, 内積を利用 して, A [(内積)=0] を計算により示す。 Oは△ABCの外心であるから, OA|=|OB|=|OC| も利用。 CHART 線分の垂直 (内積) = 0 を利用 (1) ∠A=90° ∠B=90° としてよ A 直角三角形のときは 解答 い。 このとき,外心Oは辺BC, G CA上にはない。 ① OH = OA+OB+OC から AH OH-OA=OB+OC ゆえに AH・BC =(OB+OC) (OC-OB =|OC|-|OB=0 B C 411 ∠C=90° とする。 このとき,外心は辺AB 上にある (辺AB の中 点)。 1 草 4 位置ベクトル、ベクトルと図形 同様にして60+40 =|OA|-|OC|=0 BC=OC-OB (分割) △ABCの外心0→ OA=OB=OC A0+00 50+1 (数学A) BH・CA=(OA+OC) (OA-OC) また, 1 から AH = OB+OC≠0, BH = OA+OC ¥0 よって, AH ≠0, BC≠0, BH ≠0, CA 0 であるから AH IBC, BHICA すなわち AH⊥BC, BHICA したがって,点Hは△ABCの垂心である。 検討 外心, 重心、心を通る直 線 (この例題の直線 180 OGH) をオイラー線と いう。ただし、正三角形 1 は除く。 (2) OG= OA+O+OC 10日から OH=3OG (1) から 3 3 OA+OB+OC=OH ゆえに GH = OH-OG=2OG よって, 3点0,G, Hは一直線上にあり GH=2OG 練習 右の図のように, △ABCの外側に P Q ③ 31 AP=AB, AQ=AC, ∠PAB= ∠QAC=90° となるように、2点P,Qをとる。 更に、四角形 AQRP が平行四辺形になるように点をと ると,ARIBC であることを証明せよ。 B09 C

回答募集中 回答数: 0