学年

教科

質問の種類

数学 高校生

どういうことですか?

BECAUTS 684 第10章 空間のベクトル Check 例題 考え方 解 練習 390 人気 (1) 直線l:x-1=y-1 390 平面の方程式の決定 平面α の方程式を求めよ. (2)直線m: 2 平面β の方程式を求めよ. 18 *** a) S z+1を含み, 点A(1,-2,3)を通る +9A 2 x+1_y-1²-1 3 に垂直で,点B(2, 2, 2) を通る F (1) 一直線上にない3点を通る平面はただ1つ決まるから, 直線上に適当な2点 を定め、その2点と点Aを通る平面の方程式を求める (2) 直線m⊥平面βより,平面Bの法線ベクトルは直線mの方向ベクトルである mmmmm よって, 4 89+9A ADELINE (1) x=1, x=0 として,直線上の2点B(1,1,-1), (0,-1,1)を定める. 一直線上にない3点A,B,C を通る平面上の任意の点をP(x,y,z)とする.> AP=sAB+tAC (s,t は実数) が成り立ち, AP=(x-1, y+2, z-3), AB = (0,3,4), AC=(-1, 1,-2) であるから、 01 (SI-A (x-1,y+2, z-3)=s(0, 3, -4)+t(-1, 1, -2) よって, x-1=-t, y+2=3s+t, z-3=-4s-2t これより, s, t を消去すると, 2x-4y-3z=1 (別解) x=1,x=0 として,直線上の2点B(1, 1, -1), C(0, -1, 1) を定める. また, 平面αの法線ベク トルを n = (a,b,c) (n=0) とする. 0 AB=(0, 3, -4), AC = (-1,1,-2) だから, AB より, n ・AB=36-4c=0 nLAČKY, (2) (2, -3 x=1, 2 などでもよい、 ZCVA ニテ < [[tAC la A SAB 平面αの式を P T B ax+by+cz=d n・AC=-a+6-2c=0 これより、その1つは,α=2,6=4,3 よって, 求める平面の方程式は、法線ベクトルがAはCから下 =(2,-4,-3) で,点A(1,2,3) を通るので, 2(x-1)-4(y+2)-3(z-3)=0 より 2x-4y-3z=1 (2) 直線mの方向ベクトル u = (2,3,4)は,平面βの法 線ベクトルになっているから,平面βの方程式は、 2(x-2)+3(y-2)+4(z-2)=0 2x+3y+4z=18 とおき, 平面αを通る 3点の座標を代入して もよい。 なお,点Aのほか, 適 当な2点をとればよい. 21100 平面βの法線ベクトル はn=(2,3,4) より, 2x+3y+4z=d と表せ る。これが点Bを通る ことを利用してもよい。 (1) 2点A(0,-2,-1), B(3,4, -1) を結ぶ線分ABを2:1に内分する点 をCとする. 点Cを通り線分AB 考え 食

回答募集中 回答数: 0
物理 高校生

2番からお願いします。答えは貼っている通りです

やや 471. くし形電極のコンデンサー■ 図のように,面積がSで , 同じ形の4枚の導体平板 I,Ⅱ, ⅢI, ⅣV を互いに平行に並べ, 「 I I と ⅢI,ⅡI' と Ⅳ をそれぞれ導線で接続する。 IとⅡIの間隔, およびⅢIとⅣの間隔はD, ⅡIとⅢの間隔はdである。 ⅠとⅢI の電荷の合計と,ⅡIとⅣVの電荷の合計は,互いに逆符号で同 じ大きさである。 導体平板間は真空であり,真空の誘電率を ED とする。次の文の()に入る適切な式を答えよ。 IのⅡに面した側の表面にある電荷をQ(>0) とする。 ⅠとⅡIの間の電場の強さは ( 1 )である。 ⅡIとⅢの間の電場の強さは ( 2 ) ⅡIのⅢに面した側の表面にある 電荷は( 3 )である。 さらに,ⅢのⅣに面した側の表面にある電荷は ( 4 )である。 以上から,IとⅢを一方の極板とし, ⅡIとⅣを他方の極板としたコンデンサーの電気容 量は( 5 ) となる。 (12. 慶應義塾大改) ヒント 469 (1) 極板 AD からなるコンデンサーと, 極板 BD 470 (1) 金属板内はどこも等電位であり, 金属板を挿 471 IとⅢIIとIVはそれぞれ電位が等しく, IとⅡ IV SD D di D コンデンサーの並列接続とみなせる。 後で極板間の電圧は一定である。 1. ⅡIとⅣの電位差は等しい。

回答募集中 回答数: 0