学年

教科

質問の種類

数学 高校生

丸したところはどういう意味ですか?解説お願いします🙇🏻‍♀️

重要 例題 )正八角形 A1A2…… As の頂点を結んでできる三角形の個数を求めよ。 2)(1)の三角形で, 正八角形と1辺あるいは2辺を共有する三角形の個数を求め |A よ。 3)正n角形 A1A2……Anの頂点を結んでできる三角形のうち, 正n角形と辺 を共有しない三角形の個数を求めよ。ただしn25とする。 [類法政大,麻布大) T人 L7 (1) 三角形は,同じ直線上にない3点で1つできる(前ページの検討参照)。 (2)[1] 正八角形と1辺だけを共有する三角形 →共有する辺の両端の点と,その辺の両隣の2点を除く点が頂点となる。 [2] 正八角形と2辺を共有する三角形→隣り合う2辺でできる。 (3) の (1),(2), (3) の問題 (1), (2) は (3) のヒント (全体)-(正n角形と辺を共有する三角形)で計算。 さtiで 基本 24 1章 5 組 師を付け 人除 (8) マ人も せ 答 正八角形の8つの頂点から, 3つの頂点を選んで結べば, 1 の三角形ができるから, 求める個数は 8.7·6 A。 8Cg= =56 (個) 3.2·1 ] 正八角形と1辺だけを共有する三角形は,各辺に対 し,それに対する頂点として, 8つの頂点のうち, 辺の両端 および両隣の2項頂点以外の頂点を選べるから, 求める個数 には | 正八角形と2辺を共有する三角形は,隣り合う2辺で 頂点1つに三角形が1つ対 できる三角形であるから, 8個ある。 って,求める個数は 正n角形の頂点を結んでできる三角形は, 全部で,Cs 個あ そのうち,正n角形と1辺だけを共有する三角形は (*) (三角形の総数) =5のとき n(n-4) 個あり, 2辺を共有する三角形は n個 - (1辺だけを共有するもの) うから,正n角形と辺を共有しない三角形の個数は -(2辺を共有するもの) A。 A A。 A。 A。 (8-4)·8=32 (個) 応する。 32+8=40 (個) n(n-1)(n-2) 3.2-1 イ=(n-1)(n-2) -6(n-4)-6} ,Cg-n(n-4)-n= ーn(n-4)-n _1 -n(n-4)(nー5) (個) =n(n-9n+20) 6 円に内接するn角形F(n>4)の対角線の総数はア口本である。また, Fの頂 方?つからでキる三角形の総数は |個,Fの頂点4つからできる四角形の総

解決済み 回答数: 1
数学 高校生

数A 組み合わせです。 (3)の解説の3行目のn≧5のときn(n-4)個ありの部分が理解できません。 なぜn(n-4)になるのですか?

指針> (1) 三角形は,同じ直線上にない3点で1つできる (前ページの検討参照)。 重要例題25)三角形の個数と組合せ を共有しない三角形の個数を求めよ。ただしnw5 とする。 [類法政大, 麻布大) 正八角形 A1A2……As の頂点を結んでできる三角形の個数を求めよ。人e 33. ①OO0 よ。 世有しない三角形の個数を求めよ。ただしn25とする。: [類法政大, 麻布大] 基本 24 「11 正八角形と1辺だけを共有する三角形 →共有する辺の両端の点と,その辺の両隣の2点を除く点が頂点となる。 「21 正八角形と2辺を共有する三角形→隣り合う2辺でできる。 (2) の (1), (2), (3) の問題 (1), (2)は (3) のヒント 11 5 3章 (全体)-(正n角形と辺を共有する三角形)で計算。 合 人お () I人ー せ COE 解答 正八角形の8つの頂点から, 3つの頂点を選んで結べば, 1 つの三角形ができるから,求める個数は 8.7-6 A」 8C3= 3.2·1 =56(個) A。 A。 (2)[1] 正八角形と1辺だけを共有する三角形は,各辺に対| A, し、それに対する頂点として, 8つの頂点のうち, 辺の両端 および両隣の2頂点以外の頂点を選べるから, 求める個数 は [2] 正八角形と2辺を共有する三角形は,隣り合う2辺で 頂点1つに三角形が1つ対 できる三角形であるから, 8個ある。 よって,求める個数は (3) 正n角形の頂点を結んでできる三角形は,全部で, Cs 個あ る。そのうち,正n角形と1辺だけを共有する三角形は |(*) (三角形の総数) n=5のとき n(n-4) 個あり, 2辺を共有する三角形はn個 のるから,正n角形と辺を共有しない三角形の個数は -(2辺を共有するもの) A, A。 (8-4)-8=32 (個) る人 A。 応する。 役 32+8=40(個) ー(1辺だけを共有するもの) イ=(n-1)(n-2) n(n-1)(n-2) 3-2·1 ノ-n(n-4)-n -6(n-4)-6} *,Ca-n(n-4)-n= =n(nー9n+20) -n(nー4)(n-5)(個) to 豊

解決済み 回答数: 1
物理 高校生

イの㈡について Z≠1となっていますが、複素数は実数も含むならなぜこのようなことが言えるのでしょうか??教えて下さい!

51のn乗根- (東北学院大·文,教養) (イ)複素数2はz%=cos72°+isin72° とする。 O(1)z"=1となる最小の自然数nはn= である。 (2) 2+z+2?+z+1=[ , cos72°+cos144°= である。 (西南学院大·文) z"=1を満たすa (=1のn乗根) 2"ー1=(z-1)(2ガ-1+2"-2+……+z+1) となるから、2"=1のときえキ1ならば、2"-1+z"-2+…+z+1=0を満たす。 次に,ド、モアブルの定理を用いて, z"=1 を解いてみよう. z"=1により, |2|*=|2"|=1であるから, |2|=1であり, z=cos0+isin0 (0名0<2x)と おける。ド·モアブルの定理により, z”を計算する。 2"=1のとき,cosn0+isinn0=1 ; n0=2x×k (0Sn0<2x×nにより, k=0, 1, 2, …, n-1) 2サー1を因数分解すると, 22 21 |20 1℃ 23 24 25 . cos n0=1, sinn0=0 n=6の場合 0を求め,1のn乗根は, 2k=Cos 2元 -× n 2元 k+isin( ×k)(k=0, 1, 2, ……, n-1) のn個 n 点2は,図のように点1を1つの頂点とする正n角形の n個の頂点になっている。 ■解答 (ア)a-1=0により, (α-1) (α*+a°+α?+a+1)=0 α=1のときA=24=16 である. 以下, αキ1のときとする。 a=1のとき, a8=a".α°=a°であるから, ■Aを(ひとまずはα"=1を使わ ず)展開すると, 1+a+a?+…+a'5 ここでa=1を使うと 1+a+a?+α°+a* +(1+a+a?+α3+α*) =(1+a+a?+a®) (1+α°+α*+a") (: α'=1により α'=α°) αキ1とのにより, 1+α+α°+α3+a*=0… ② であるから, A=(-a^) (-a)=α"=1 (イ)(1) z"=cos (72°×n)+isin(72°×n)… 0 であるから, 2"=1 → 72°×nが360°の整数倍 → nが5の整数倍 よって,求めるnは, n=5 (2) 2-1=0により, (z-1)(2+2°+z?+z+1)=0 2キ1により,ztz°+z?+zt130 これに①を代入する. 実部%3D0 である, 72°×5=360° に注意して, cos(72°×4)+cos (72°×3) +cos (72°×2)+cos72°+1=0 cos(-72°) +cos(-72°×2) +cos (72°×2) +cos72°+1=0 となるので,αキ1のとき②から A=1 94 21 22 72° 23 . 2cos72°+2cos(72°×2)+1=0 cos72°+cos144°=- 2 5演習題(解答は p.66) 1) 複素数zが, z°=1, zキ1を満たすとき,(1-z)(1-z?)=[ア], 1 11 イ」 1-z 1-22 2)複素数zが, z5=1, zキ1 を満たすとき,(1-z)(1-2?)(1ー)(1-7)

解決済み 回答数: 1