学年

教科

質問の種類

数学 高校生

3番についてです。回答としては,一辺だけ共有するのもを求めています。が、この問題は排反?みたいな感じで、 全ての三角形から2辺を共有するものを引く、ではダメなのでしょうか?

296 三角形の個数と組合せ 本例題 24 正十角形について,次の数を求めよ。 対角線の本数 正十角形の頂点のうちの3個を頂点とする三角形の個数 (2) の三角形のうち,正十角形と1辺だけを共有する三角形の個数」 CHART & SOLUTION 三角形の個数と組合せ 図形の個数の問題では, 図形の決まり方に注目 三角形は1つの直線上にない3点を結んでできる。 (2)正十角形の10個の頂点は、どの3点を選んでも1つの直線上にない。 (3) 共有する1辺に対して, 三角形の第3の頂点の選び方を考える。 解答 (1) 異なる10個の頂点から2個の頂点を選ぶ方法は 10 C2 通り この中には正十角形の10本の辺が含まれている。 よって 10 C2-10= 10-9 2・1 -10=35 (本) (2) 3個の頂点で三角形が1個できるから, 求める個数は 10.9.8 10C3=4 =120 (個) 3.2.1 (3) 正十角形の10個の頂点を図のよ うに定める。 このとき, 辺ABだけ を共有する三角形の第3の頂点の選 び方は, A, B とその両隣の2点C, J を除く, D, E,F,G,H, I の6通り。 他の辺を共有する場合も同様である から, 求める個数は 6×10=60 (個) D B E F J p.293 基本事項 1 ◆辺または対角線は2個 の頂点を結んでできる。 H 3個の頂点の選び方が異 なれば, 三角形も異なる。 inf 正十角形と2辺を共 有する三角形は左の図の △ABCのように、隣接す る 2辺を共有する。よって この場合は頂点の数だけあ り 10個となる。 2辺共有する ひくのは? INFORMATION 正n角形の対角線の本数 n個の頂点から異なる2点を選んで結び, そこから辺になるものを除く。 n(n-3) よって、 正n角形の対角線の本数は nC2-n= (本) 2 C

未解決 回答数: 2
数学 高校生

実部=0なのは何故ですか?

51のn乗根 (東北学院大・文教製 (ア) 複素数 α が α=1を満たしているとき, A=(1+α)(1+α^)(1+α*) (1+α)の値を求めよ 54 (イ) 複素数z z = cos72°+isin 72° とする. (1) z" =1 となる最小の自然数nはn=である. (2) 24+2+22+z+1= z=1を満たす (=1のn乗根) 2-1=(z-1)(27-1+2"-2+..+z+1) となるから,2"=1のときz+1ならば, z"-1+2"-2+ + z+1=0 を満たす。 次に,ド・モアブルの定理を用いて, z"=1を解いてみよう.z"=1により, |z|"=|z"|=1であるから, |z|=1であり, z= cos0+isin0 (0≦0<2π) と おける. ド・モアブルの定理により, z" を計算する. z"=1のとき, cosn0+ isinno=1 cosn0=1, sinn0=0 ∴n=2πxk(0≦x<2π×nにより, k = 0, 1,2,.., n-1) -Xk+isin を求め、 1のn乗根は, Z = Cos 点2は、図のように点1を1つの頂点とする正n角形のn個の頂点になっている 2x cos ( 2² 7 ( 2 1 × R) n n 1 1-² 「解答」 (ア) α-1=0 により, (α-1)(α+α3+α²+α+1)=0 α=1のときA=24=16である. 以下, α=1のときとする. α5=1のとき, α = α5.α3=α3であるから, A= (1+ a)(1+a²). (1+aª) (1+α³) = (1 + a² +a+a³)(1+a³+aª+a²) =(1+α+α2+α3)(1+α+α+α²) ( ∵ α=1によりα7=α²) α=1と①により,1+α+α²+α3+α4=0.........② であるから, A = (-α4) (-α)=α=1 (イ) (1) z"=cos (72°×n) +isin (72°×n)・・・・・ ① であるから, z"=1⇔ 72°×nが360° の整数倍nが5の整数倍 よって, 求めるnは, n=5 (2) 25-1=0により, (z-1)(z4+23+z²+z+1)=0 z=1により, z4+2+z'+z+1=0 これに ① を代入する. 実部=0である. 72°×5=360°に注意して, cos (72°×4)+cos (72°×3)+cos (72°×2)+cos72°+1=0 ∴. cos (-72°) +cos (-72°×2)+cos (72°×2)+cos72°+1= 0 ∴.2cos72°+2cos (72°×2)+1=0 + cos72°+cos144°である。 2-1 を因数分解すると, イ 1-24 I cos 72 +cos 144°=-- 23 2 22 y Ox ZA (k=0, 1,2,..,n-1) のn個 5 演習題 ( 解答は p.66 ) (1) 複素数zが,z=1, z=1を満たすとき, (1-z) (1-22)=ア, 1 1-22 (2) 複素数zが,25=1, z=1を満たすとき, (1-z) (1-22) (1−2²) (1-24)=ウ, 1 1 1 + + 1-² 1-22 1-23 (東京理科大 理工) 23 25 n=6の場合 ■Aを(ひとまずは=1を使わ ず) 展開すると, 1+α+α²+..+α15 03 ここで=1を使うと 1+a+a²+a^²+a^ +(1+a+a²+²³+ a²) +(1+a+a²+³+a²) +1 となるので, α=1のとき②から A=1 y+ 21 24 |1=20 (ア) BA, (イ) ある (ウ) PC (2) 25=1が使えるよ うな2つをペアにする。

解決済み 回答数: 1
数学 高校生

なぜOAが角Aを二等分するんですか?

56 第4章 図形と計量 ① 考え方 練習 147 **** 例題 147 円に内接する正n角形 原点Oを中心とする半径1の円が座標平面上にある. この円に正三角 形ABCが内接しており, OAとx軸の正の向きとのなす角が9 (0°<0<30°)である.ただし,点Aは第1象限,点Bは第2象限にある ものとする. (1)辺ABとy軸の交点をDとする. ODの長さを0を用いて表せ。 (2) △ABCのy軸より右側の部分の面積Sを0を用いて表せ. 図をかいて考える. (1) △OAD に着目する. OAは∠Aを2等分し, OA=1 (1) △OAD に着目すると, A (2)辺AC とy軸との交点をEとすると,求める面積は △ADE の面積である. Apo-S-³A+S-²08 ∠AOD=90°-8, ∠OAD = 30° したがって SEA WE 0864 S よって, 正弦定理より, 90°- 300 ZODA=180°-{(90°- 0)+30°} £I+Ione- = 0+60° Abob EyE+S= ID 正弦定理より, OD sin ∠OAD 956 SCORP より ∠AOE=90°+6, ∠OAE = 30° より,∠OEA=180°-{(90°+0)+30° =60°-6 より、S=1/12・DE・h=COSO cos OD OD=- sin 30° sin (0+60°) 2sin (0+60°) (2)辺ACとy軸との交点をEとすると, cial = A 200~ △OAE に着目して B/DAY fiken OA sin ZODA 1 HI 00- Ania A OE 1 sin 30° sin (60° - 0) Aare A= OE= EL 1 sin ( 60°+0) A 30° x =Ania A a したがって, 2sin(60° -0) AADE において, DE= 1/21 sin (60°+9)+sin(60°−6) sin (60° x B DI 軸の正の向きとのなす角が 0 (0°<690° であるとする 第1象限, 点Bは第 (h)=cos ANSTREGI 143 OF 1E CT-1 OAは∠Aの2等分 0 三角形の内角の和は 180° YA H OAは円の半径より ROA=1 △ADE で, DE を底 辺とみて面積を求め るために,まずOE を求める. 0 A /1x 2000 20 cos f A XxC 原点Oを中心とする半径1の円に内接する正方形 ABCD において, OA と x ただし 点Aは

解決済み 回答数: 1
数学 高校生

数学1の画像の問題がわかりません。解き方を教えてください。

15 20 10 5 庭学習 3 正多角形と円周率の値 学習のテーマ 三角比 円周率πは無理数で, 3.141592・・・ と続く循環しない無限小数で表される ことが知られている。 古代ギリシャの時代でも円周率の近似値が計算さ れていた。 ここでは、円周率の近似値を求める方法について考えることにしよう。 課題 右の図は, 半径1の円に外接する正六角 7 形Pと内接する正六角形Qである。 (1) 正六角形P, Qの周の長さを,それ ぞれ求めてみよう。 (2) (1) の結果を利用して, 円周率πの値 の範囲を求めてみよう。 P 課題 (1) 右の図で, AB は半径1の円に内接 8 する正 12角形の1辺である。 辺ABの長さを, 三角比を用いて 表してみよう。 (2) (1) の結果を利用して, ™ > 3.1 であ ることを示してみよう。 130° 円に内接する正n角形の周の長さは,nを大きくすると円周の長さに 近づくと考えられる。 次に, 正 12角形について調べてみよう。 1 A B まとめの課題3 半径1の円に内接する正 24 角形の1辺の長さは√2-√2+√3という式で 表されることが知られている。 電卓のルートキーを用いて,この長さを求め てみよう。また, その結果を用いて, >3.13 であることを示してみよう。

回答募集中 回答数: 0