学年

教科

質問の種類

英語 高校生

問題で、段落1.2段落からと書いてあるので、Last year〜から、to seeまでかなっと思ったんですけど、実際は、in the summerまででした。 棒線部1の前にはきちんと空いているのになぜそうなるのでしょうか? わかる方お願いします。 どっちかと言うと英語では... 続きを読む

4 S 15 Chapter yar 英文を読んで、設問に答えなさい。 (thousands of yen) 1400 1200 1000 800 600 400 200 0 January March February April 花の売り上げ Flowers Sales May June July August October Septemb Decembe November 目標時間 words 40 minutes ~ included children, teenagers, and working people who used the station. At the end of this year, she looked carefully at her monthly sales for the whole year. She made a graph to make the monthly trends easier to see. Last year, Margaret opened a new flower shop in Nagoya. Her shop was just in front of a railway station and soon became popular. Her customers According to her data, flowers sold best in December. During the 12月 Christmas season, people buy flowers for Christmas parties, and some people choose flower bouquets as presents. Also, flowers are a common feature when celebrating the New Year and people tend to buy more expensive flowers at 310 the end of the year. In March, there are many opportunities to send flower bouquets, such as graduation ceremonies and job transfers. Similarly, in May people often buy flower bouquets for Mother's Day. Interestingly, sales were good in August, too. The reason is that many Japanese people bring flowers to family graves in the summer. der 秋 On the other hand, flowers did not sell well during fall. Margaret wanted to attract new customers and increase sales in that season. She came up with (2) two ideas. One was to target Respect-for-the-Aged Day on the third Monday in September. She was sure some people would want to send flowers to grandparents on that day. The other was a Halloween promotion She decided to make bouquets in the typical colors of Halloween that people could put in their homes on that day. She hopes that her total yearly sales will # 201 be higher next year. トータル 2つめのアイテ A-1 A-2 A-3

解決済み 回答数: 1
数学 高校生

数列です (2)の囲んだところがよく分かりません どうして公比2になるんですか?

442 基本例題 20 一般項を求めて和の公式利用 次の数列の初項から第n項までの和を求めよ。 (1) 12,32,52, 指針 次の手順で求める。 ① まず 一般項を求める 解答 (1) +ESUT? Can 与えられた数列の第k項をak とし, 求める和を Sn とする。| =(2k-1)2 (2) 1,1+2, 1+2+22, →第k項をnの式で表す。 ②22(第k項) を計算。 Σk, Σk2, Σk の公式や, 場合によっては等比数列の和の k=1 公式を利用。 よってSn=ax=②(2k-1)=2(4k²-4k+1) k=1 n n n 766 679 €) = 4 2 k² − 4 ± k + 2¹ =k-1 k=1 data k=1 k=1 注意で,一般項を第n項としないで第k項としたのは, 文字nが項数を表して いるからである。 (2) αk=1+2+22+...... +2k-1 ←等比数列の和 等比数列の和の公式を利用して ak をk で表す。 CHART Σの計算 まず一般項 (第k項) をんの式で表す =4.1/n(n+1)(2n+1)-4・1/23n(n+1)+n = n{2(n+1)(2n+1)−6(n+1)+3} -n(4n²-1) = n(2n+1) (2n-1) (2) ak=1+2+2²+...+2k-1 — 1• (2²—1) =2-1 2-1 よって n Sn=Σ ak= Σ(2k-1)= Σ 2² — Σ 1 k=1 k=1 k=1 n = k=1 2(2-1) 2-1 ………... 基本1 (*) 重要 32 第k項で一般項を考え る。 1/1/3でくくりの中 に分数が出てこないよう にする。 --n=2"+1-n-2 注意 和が求められたら, n= 1,2,3として検算するように心掛けるとよい。 例えば,(1) では, (*)において,n=1 とすると1で,これは12に等しくOK。 (*)において n=2とすると10 で, 12 +32 = 10 から OK。 各項の km 21 1 第n項がれ! akは初項1,公比 2, 項 数んの等比数列の和。 [参考 Sn= 2 (2 2²-¹) 2 S. 表すこともできる。 別の和を求め、 (+) ・の左 ・の右 これらを持 →初 また, k= この数列の k したがっ

解決済み 回答数: 1
数学 高校生

数Ⅲの極限です。 マーカー部分なのですが、上では<だったのに下で突然≦になったのは何故でしょうか? なにか意図があって変えているんですか?それとも極限を求めるにあたって=の有無はどうでもいいから付けといたみたいな感じですか?💦

9 はさみうちの原理 a1=0, an+1= 4 (1) 0≦a<1が成り立つことを,数学的帰納法で示せ. (2) 1-an+1< が成り立つことを示せ . 1-an 2 (3) liman を求めよ. n→∞ an²+36 FESJARIL (n=1, 2, ......) で定義される数列{an} について 1 2n-1 (1)により, 解けない2項間漸化式と極限 簡単には一般項を求めることができない2項間の漸化式 an+1=f(an) で定まる数列の極限値を求める定石として, 以下の方法がある. 1°am の極限が存在して, その値がαならば, liman = α, liman+1 = α であるから, αは α = f(α) を 満たす. これからαの値を予想する. n→∞0 n→∞0 2°与えられた漸化式 an+1= f(an) と α = f (α) の辺々を引くと, an+1- α = f(an) - f(a) となる が,これから, |an+1-α|≦k|an-al, kは 0≦ん<1である定数 ..☆ の形の不等式を導く.すると,|an-α|≦klan-1-a|≦ke|an-2-a|≦... ≦kn-1|a-a| 0≦an-akskn-1|α1-α| limk"-1|a-α|=0 であるから, はさみうちの原理により,|an-α|→0 言解答量 (1) n に関する数学的帰納法で示す. n=1のときは成立する. n=kでの成立,つまり 0≦x<1が成り立つとすると,k+1 について, 0≤ak+1 <1 4 4 よってn=k+1のときも成立するから, 数学的帰納法により示された . DATART an² +3 1-an (2) 漸化式から, 1-an+1=1- (1-an) 4 4 1-an>0であるから, 1+ an 4 n→∞ (なお、要点の整理・例題 (8) から,☆のkは定数でないと, an →α とは結論できない) 02312+3 -≤ak+1 <= < 1+1=1/12/2 4 .. 1-an+1< -1</2/(1-an) (3) 1-a>0と①を繰り返し用いることにより, 1 1 0≤1-an < (1-an-1)< (1- -an-2)<... <- 22 2n-1 1tan_ 4 (解答は27) -(1-a₁)= - 0 より はさみうちの原理から lim (1-4m) = 0 n-00 1 2n-1 liman=1 (岡山県大・情報工-中) 1118 :. an→α (n→∞) 0≦x<1のとき,02≦a² <12 ←漸化式を用いて1-Qn+1 を anで 表す. 本問の場合、求める極限値をα として, 1° を使うと, a²+3 α= 4 からαの値が予想できる. a=1, 3

解決済み 回答数: 1