数学
高校生
解決済み

数列です
(2)の囲んだところがよく分かりません
どうして公比2になるんですか?

442 基本例題 20 一般項を求めて和の公式利用 次の数列の初項から第n項までの和を求めよ。 (1) 12,32,52, 指針 次の手順で求める。 ① まず 一般項を求める 解答 (1) +ESUT? Can 与えられた数列の第k項をak とし, 求める和を Sn とする。| =(2k-1)2 (2) 1,1+2, 1+2+22, →第k項をnの式で表す。 ②22(第k項) を計算。 Σk, Σk2, Σk の公式や, 場合によっては等比数列の和の k=1 公式を利用。 よってSn=ax=②(2k-1)=2(4k²-4k+1) k=1 n n n 766 679 €) = 4 2 k² − 4 ± k + 2¹ =k-1 k=1 data k=1 k=1 注意で,一般項を第n項としないで第k項としたのは, 文字nが項数を表して いるからである。 (2) αk=1+2+22+...... +2k-1 ←等比数列の和 等比数列の和の公式を利用して ak をk で表す。 CHART Σの計算 まず一般項 (第k項) をんの式で表す =4.1/n(n+1)(2n+1)-4・1/23n(n+1)+n = n{2(n+1)(2n+1)−6(n+1)+3} -n(4n²-1) = n(2n+1) (2n-1) (2) ak=1+2+2²+...+2k-1 — 1• (2²—1) =2-1 2-1 よって n Sn=Σ ak= Σ(2k-1)= Σ 2² — Σ 1 k=1 k=1 k=1 n = k=1 2(2-1) 2-1 ………... 基本1 (*) 重要 32 第k項で一般項を考え る。 1/1/3でくくりの中 に分数が出てこないよう にする。 --n=2"+1-n-2 注意 和が求められたら, n= 1,2,3として検算するように心掛けるとよい。 例えば,(1) では, (*)において,n=1 とすると1で,これは12に等しくOK。 (*)において n=2とすると10 で, 12 +32 = 10 から OK。 各項の km 21 1 第n項がれ! akは初項1,公比 2, 項 数んの等比数列の和。 [参考 Sn= 2 (2 2²-¹) 2 S. 表すこともできる。 別の和を求め、 (+) ・の左 ・の右 これらを持 →初 また, k= この数列の k したがっ

回答

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉