学年

教科

質問の種類

数学 高校生

(1)(2)のどちらも絶対値を求めてから計算をはじめていますが、これは何を表しているんですか?

515 重要 例題 96 複素数の極形式 (2) 次の複素数を極形式で表せ。ただし、偏角010≦0<2πとする。 -cosa+isina (0 <α <π ) (2) sina+icosa (0≦x<2) 偏角の範囲を考える 0000 ・基本 95 既に極形式で表されているように見えるが,r(cos+isin) の形ではないから極形 指針 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cosA を利用。更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の cos を sin にする必要があるから, cos(7-0)=sinė, sin(7-0) 0 =cose を利用する。 2 また,本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと 注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は (-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) cos(-b)=-coso sin(0)=sin0 3章 1 複素数の極形式と乗法、除法 解答 また ① 0<<より,0<π-α <πであるから,①は求める極 形式である。 偏角の条件を満たすかど うか確認する。 (2) 絶対値は (sina)²+(cosa)² =1 058527 また ここで π sina+icosa=cos| cos(-a)+isin(-a) cos(-9)=sine Ome のときであるから,求め <2mから 2 る極形式は sinaticosa=cos | π a ゆえに, αの値の範囲に よって場合分け。 sin(-)-cos o π <<2のとき,偏 2 (-a)+isin(-a) π 3 <α <2のとき π 2 < -a<0 2 2 各辺に2を加えると、1/11/22であり、 52 -π 5 COS oly なお s(-a)= cos(-a), COS sin(-a)-sin(-a) よって, 求める極形式は sina+icosa cos(-a)+isin(-a) 角が0以上2 未満の範 囲に含まれていないから, 偏角に2m を加えて調整 する。 COS (+2nz)=COS sin(+2nx)=sin [n は整数] 練習 次の複素数を極形式で表せ。 ただし、偏角0 は 002 とする。 396 (1) cosa-isina (0<a<x) (2) sina-icosa (0≤a<2π) PP

未解決 回答数: 0
数学 高校生

数学Ⅱで質問です。 写真の問題の解答で、 [2]でm≠−1 をするのはどうしてか教えていただきたいです。お願いします。

26 第2章 複素数と方程式 CONNECT 5 方程式がただ1つの実数解をもつ条件 第 1 xの方程式 (m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をもつとき 定数の値を求めよ。 考え方 m+1=0 すなわち m =-1のとき, 与えられた方程式は1次方程式となり, だ1つの実数解をもつ。m=-1とmキー1で場合分けをする。 解答 (m+1)x2+2(m-1)x+2m-5=0 ...... ① とおく。 [1] m+1=0 すなわちm=1のとき 解と係数の関係 1 解と係数の関係 2次方程式 ax2+bx+c=0の2つの解をα,βと 2 2次式の因数分解 2次方程式 ax2+bx+c=0の2つの解をα,βと 3 2 数α,β解とする2次方程式 2数α, βを解とする2次方程式の1つは 方程式①は-4x-7=0となり, ただ1つの実数解 x=- -- 7 をもつ。 4 [2] m+1=0 すなわちmキー1のとき 方程式 ① は2次方程式となるから、①の判別式をDとすると D=(m-1)-(m+1)(2m-5)=-m²+m+6 =-(m+2)(m-3) ①がただ1つの実数解をもつのはD=0のときである。 -(m+2)(m-3)=0 よって これを解いて m=-2,3 これらはmキー1を満たす。 [1], [2] より, 求めるmの値は m=-2,-1,3 *04 の現 A 問 87 次の2次方程式について 2つの (1)x2+3x+2=0 *(3) 4x2+3x-9=0 *88 2次方程式 x²-2x+3=0の2 めよ。 (1)Q2+β2 (2) 303 (5)

未解決 回答数: 1
情報:IT 高校生

カで0からスタートした場合なぜj-1になるのですか?

目標 重要テーマを確実におさえよう! テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 7個のデータ [-100 20 30 40 50 60,1000] のうち,外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。 この〈プログラム> では, 元 のデータ7個が配列 Data[0], Data[1], 四分位範囲 の1.5倍 四分位範囲 Data[6] に格納されており,第1四分位数を q1, 第 3 四分位数を q3 とし,四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], ... に格納するものとする。 なお, すべての配列の添字は0か ら始まるものとする。 (1) Data=[-100,20,30, 40, 50, 60, 1000] (2) Data_c = [0,0,0,0,0,0,0] (3) q1=20 (4) g3=60 (5) j=0 (6) iを0からイ まで1ずつ増やしながら繰り返す : (7) | もし Data[i] = ウ and Data[i] <= エ ならば : (8) | | Data_c [j]=Data[i] (9) L L j = オ (10)s=0 (11)を0から カまで1ずつ増やしながら繰り返す: (12) L s = s +Data_c[i] (13) 表示する(キ) <プログラム> 空欄 ア ~ キに最も当てはまるものを, 次の解答群から一つずつ選べ。

未解決 回答数: 1