学年

教科

質問の種類

数学 高校生

(2)です なぜこのように4つ場合分けをするのかわかりません

DO 123 重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラスをかけ。 (1) y=f(x) (2y=f(f(x)) 指針 2x (0≦x<2) f(x) = 8-2x (2≦x≦4) 利用する け。 3歳 章 ⑧関数とグラフ 定義域によって式が変わる関数では,変わる境目のx, yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で、 f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, f(x) <2となるxの範囲と, 2f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 解答 (2f(x) (2) f(f(x))= [8-2f(x) よって, (1) のグラフから (0≦f(x)<2) (2≦f(x)≦4) 0≦x<1のとき f(f(x)) =2f(x)=2.2x=4x FI 1≦x<2のとき f(f(x)) =8-2f(x)=8-2.2x =8-4x 0+ 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) y 4 2 (2) A. M. 1 2 3 4 0 1 2 3 4 変域ごとにグラフをかく。 < (1) のグラフから, f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 一考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 YA 8から2倍を 引く 4 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で, 黒の太線 細線部分がy=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 一成関数といい, (fof) (x) と書く(詳しくは数学Ⅲで学ぶ)。 4 x 2倍する ■ 関数f(x) (0≦x< 1) を右のように定義するとき, 次の関数のグラフをかけ。 2x (0≦x<1/21) f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 -1 (12/1)

解決済み 回答数: 1
数学 高校生

数Ⅲの関数のグラフについてです。 lim(x→2√2-0)y’=-∞とlim(x→+0)y’=2√2をもとめるのはなんでか知りたいです。 yの極限ではなく、y’の極限を求めているのは漸近線とは別の目的があるんですか??

110 in 重安 例題 光形 (3) 陰関数 00000 方程式y2=x2(8-x2) が定めるxの関数yのグラフの概形をかけ。200 して 問題における便の 次の 基本 107 108 陰関数の形のままではグラフがかけないから、まずy=f(x)の形にする。そして,こ 指針 れまで学習したように,次の点に注意してグラフをかく。 定義域,対称性,増減と極値,凹凸と変曲点, 座標軸との共有点,漸近線 中でも、この問題では対称性がカギをにぎる。 y2=x2(8-x2) において xをxとおいても同じ→y軸に関して対称 y-yとおいても同じx軸に関して対称 →原点に関して対称 185 解答 ...... 方程式でxを-x に, y を -y におき換えてもy2=x2(8-x2) は成り立つから,グラフはx軸, y軸, 原点に関して対称であ る。よって,x0,y≧0の範囲で考えるとめた内容を確認し y=x√8-x2 ■対称性の確認。 これ により, グラフをか く労力を減らす。 ① 12020 8-x≧0 であるから の 0<x<2√2のとき y'=√8-x2+x 28-x2 0≤x≤2√20 -2x 2(4-x2) 2x√8-x²-(4-x2)・ √8-x2 <y=f(x) の形に変形。 ◄x≥0 4 章 = きない 検討 求めるグラフは, y=x√8-x2 のグラフ 135 関数のグラフ -2x 2√8-x2 2x(x2-12) y"=2. 8-x2 (8-x28x2 とy=-x√8-x2 の y' = 0 とすると,0<x<2√2 では また, 0<x<2√2のとき y" <0 x=2 グラフを合わせたもの とも考えられる(この になる。 しても 更に x-2√2-0 x 0 [図1] x+0. yA 4 2 ... 2√2 2つのグラフは,x軸 0x2√2 における関数 ① の増減、凹凸は左下の表のように関して互いに対称)。 limy'=∞, limy'=2√2 〔図2] y J" 0 + 0 2 4 0 -2√2 O 122 x 0 22√2x よって, 0≦x≦2√2 における関数 ① のグラフは [図 1] のようになる。 T ゆえに、対称性により求めるグラフは [図2] のようになる。 coin A . y軸方向に4倍した

解決済み 回答数: 1