学年

教科

質問の種類

数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
数学 高校生

(2)の解き方が分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

基本 例題 15 塗り分け問題 (1) 赤、青、黄、白の4色の絵の具で塗り分けるとき 右の図で, A, B, C, D の境目がはっきりするように, すべての部分の色が異なる場合は何通りあるか。 (4) 同じ色を2回使ってもよいが、隣り合う部分は異な 色とする場合は何通りあるか。 CHART & SOLUTION 00000 A C D B 塗り分け問題 特別な領域 (多くの領域と隣り合う, 同色可) に着目 (2)最も多くの領域と隣り合うCに着目し, C→A→B→Dの順に塗っていくことを考える。 (1) A, B, C, D の文字を1列に並べる順列の数と同じ。 答 (1) 塗り分け方の数は, 異なる4個のものを1列に並べる方 法の数に等しいから 4!=24 (通り) (2) C→A→B→Dの順に塗る。 C,A,Bは異なる色で塗るから, C→A→Bの塗り方は 4P3=24 (通り) DはCとしか隣り合わないから, C→A→B→D 4 × 3 × 2 × 3 Cの色以外の3通りの塗り方がある。パー! よって, 塗り分ける方法は全部で 24×3=72 (通り) a- Cの色を除く 2 CとAの色を除く 3 Cの色を除く ← A B C D に異なる4色を 並べる方法の数に等しい。 A, B, D の3つ Cは, の領域と隣り合う。 A とBは、2つの領域, D は1つの領域と隣り合 う。 INFORMATION (2)の別解 塗り分けに使えるのは4色。 Cは3つの領域と隣り合うから 4色と3色で塗り分け る2通りについて考えてみよう。 [1] 4色の場合 (1) から 4!=24 (通り) 2] 3色の組合せは,どの1色を除くかを考えて 4通り その3色の組に対して, C→A→Bの塗り方は 3!=6(通り) SE DはCと異なる色の2通りで塗り分けられる。 よって、3色の塗り分け方は [2]から 24140 4×6×2=48 (通り)

解決済み 回答数: 1
数学 高校生

なぜ目の和が3以上18以下だとわかるのですか? 教えてほしいです🙇‍♀️

大小2個のさいころを投げ なる場合 同じ大きさで区別のできない3個のさいころを投げて、目の和が 通りあるか。 数になる場合は何通りあるか。 CHART & SOLUTION 同時に起こらない場合の数 和の法則 基本 (1) 目の和が5または6になる場合は起こり方に重複はない。 和の法則を使う。 (2) 目の和が7の倍数になるのは目の和が7, 14の2通り。 (1) と同様に, 和の法則が る。 目の和が7のとき, 6の目を含むと残りの目が2つとも1でも和が7 から、6の目は含まれない。 あらかじめ6を除いて考え, 効率よく数える。 解答 (1) 大,小さいころの目の数を,それぞれx, yとし,出る 目を (x, y) で表す。 [1] x+y=5 のとき (x,y)=(1,4), (2,3),(3,2),(4, 1) [2] x+y=6 のとき (x,y)=(1,5) (2,4) (3,3) (4,2) (5,1) よって, 和の法則により 4+5=9(通り) (2)目の和は3以上18以下であるから,目の和が7の倍数 になるのは 7, 14の2通りである。 3つのさいころの目を{□□□} で表す。 [1] 目の和が7のとき {1, 1,5}, {1, 2, 4}, {1, 3, 3}, {2,2,3} [2] 目の和が14のとき {2,6,6}, {3, 5, 6}, {4, 4, 6}, {4,5,5} よって, 和の法則により 4+4=8(通り) INFORMATION さいころの目の区別 大 1 1 234 12 2 3 34 4 5 160/6 56 345 4 15/6/7 7 189 6 67 5 67 8 9100 6 789 10 [1] の場合 ・ [2] の場合 区別できないさい であるから、例え {1, 1,5}と{5, は同じ場合と考 「大小2個のさいころ」とは, 「2個のさいころを区別して考えよ」 ということ 例えば,(x,y)=(1,4) と (x,y)=(4, 1) は異なる目の出方を表す。 一方、 のできない2個のさいころ」 のときは (1,4) と (41) は同じ目の出方と考 この目の出方を集合で {1, 4}と表し, 順序を考慮した (14) と区別する。 ACTION

解決済み 回答数: 1
数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
英語 高校生

受動態の問題です。合っているか確認お願いします。書いていないところは教えてください

REVIEW 下の日本語を参考に、( )に適当な1語を入れなさい. ● )( These cakes (Neve) (made )( by Julia. "Apples" { are ) ( coallech ) "ringo" in Japanese. • Monkeys( ● )( )( ) around here. The sandwiches (have) alt ( been ) (sold ). ⑱The concert ( 61 ( )( )( ) ( ) by the staff then. ) ( 〉 by a foreigner at the airport. ) many people in )( )( ● The advertising display( Osaka. ●She ( was ) ( satisfied() ( with the result. ) 6 It is ) (said) that she is a famous singer in Hong Kong. ●これらのケーキはジュリアによって作られた。 e "apples" は日本語で「りんご」と呼ばれています。 この辺りではサルが見られます。 ● サンドイッチはすべて売れてしまいました。 <be+過去分詞 動作主はby 〜で表す〉 <SVOCの受動態 be + 過去分詞 +C> <助動詞を含む受動態 助動詞+be+過去分詞> 〈完了形の受動態 have [has/had] + been + 過去分詞> <進行形の受動態 be + being+過去分詞) ⑥ コンサートはそのときスタッフによって準備されているところだった。 私は空港で外国人に話しかけられた. その広告は大阪では多くの人々に知られている。 彼女はその結果に満足した。 彼女は香港で有名な歌手だそうだ。 <句動詞の受動態> <by 以外の前置詞を伴う受動態> <日本語では能動的に表される受動態> <They say that … の受動態> (1) (2) に

解決済み 回答数: 1
数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
数学 高校生

数2の直線の方程式です。 y=ax+bの式に代入して連立方程式にしても解けると思うんですが、なんでこんな公式があるんですか?!

122 基本 例題 70 直線の方程式 次の2点を通る直線の方程式を求めよ。 (1) (3,-2), (4, 1) (3) (-2, 3), (-2,-5) CHART & SOLUTION 00000 (2) (4, 0), (0, 3) (4) (-3, 2), (1, 2) p.120 基本事項 異なる2点(x1, 1), (X2, yz) を通る直線の方程式 [1] X1 X2 のとき [2] x1=x2 のとき x=x1 [解 Ante 合 (1) y-(-2)=1-(-2) 2(x1) x2-x1 交 4-3 (x-3) / (1) すなわち y+2=3(x-3) よって y=3x-11 3 1 310 (2) y-0-3-0 (x-4) 0 4 x Ea 3 よって y=-2x+3 (3) x座標がともに-2であるから x=-2 (4) y座標がともに2であるから y=2 Stixol YA [int 公式 [1] yy=12-11(x-x) の X2-X1 両辺に X2-x1 を掛けて (y2-y₁)(x-x1) -(x-x1)(y-1)=0 x= x2 とすると (y2-y₁)(x-x1)=0 yyであるから x=x (公式 [2]) (3)3 (4) 2 -2 ! よって, * は公式 [1] [2] -3 0 1 x をまとめたものである。 (p.120 基本事項 1③) -5 POINT a≠0, b=0 のとき, 2点 (α, 0), (0, 6) を通る直線 lの方程式は b-0 y-0= (xa) すなわち + 1/2=1 0-a a b ya このとき, αを直線lのx切片, bを直線lの切片という。 (2) は,これを公式として用いてもよい。 0 a b 全で ための PRACTICE 70° 次の直線の方程式を求めよ。 (1) 点 (35) 通り,傾きが√3 (3)2点 (5,1) (3,2)を通る (5)2点(-3,1) (-3, -3) を通る Ja,0)s(s) (2)2点 (5-3), (-7, 3) を通る (4) 切片が4, y切片が2z (6)2点 (1-2) (-5-2) を通る x

解決済み 回答数: 1
数学 高校生

(2)なのですがなぜ<ではなく≦なのでしょうか? Aの範囲も含んで良いのですか? よろしくお願いいたします。

を 490. 基本 例題 38 (ア) ANB (イ) AUB (1) 次の集合を求めよ。 (2) ACCとなるんの値の範囲を求めよ。 2→3→△ 実数全体を全体集合とし, A={x|-2≦x<6}, B={x|-3≦x<5}, C={x|k-5≦x≦k+5}(kは定数) とする。 不等式で表される集合の歌 00000 は 370 370 470 B479 AUB 68 基本事項 1 CHART & SOLUTION 不等式で表された集合の問題 数直線を利用 集合の要素が不等式で表されているときは、集合の関係を数直線を利用して表すとよい。 その際,端の点を含む(≦, ≧)ときは● 含まない (<, >) ときは○ で表しておくと,等号の有無がわかりやすくなる (p.55 参照)。 例えば,P={x|2≦x<5} は右の図のように表す。 2 5 x 解答 (1) 右の図から (ア) A∩B={x|-2≦x<5} (イ) AUB= {x|-3≦x<6} (ウ) B={x|x<-3,5≦x} (エ) AUB={xlx<-3, -2≦x} (2)ACCとなるための条件は -B- -B- -3-2 56 x 2章 補集合を考えるとき 端の点に注意する。 〇の補集合は ● ●の補集合は○ 5 集 集合 C ・A k-5-2 ① k=1のとき x 6≦k+5 C={x|-4≦x≦6} (2 k-5-2 6 k+5 が同時に成り立つことである。esk=3のとき C={x|-2≦x≦8} UB ①から k≦3 ②から 1≦k であり、ともにACC 共通範囲を求めて 1≦k≦3 を満たしている。 8=0

解決済み 回答数: 1