学年

教科

質問の種類

数学 高校生

(2)の数直線のとこで3a−2/4はなんで⚪︎なんですか⚫︎で表されるんじゃないんですか?

68 基本 例題 36 1次不等式の整数解 (1) (1)不等式 5x-7<2x+5を満たす自然数xの値をすべて求めよ。 3a-2 (2) 不等式 x <- 4 の範囲を求めよ。 000 を満たすxの最大の整数値が5であるとき、 定数αの値 指針 (1) まず, 不等式を解く。 その解の中から条件に適するもの (自然数) を選ぶ。 (2) 問題の条件を 数直線上で表すと、 右の図のようにな 基本34 基本 kk 5-x す整数 6 3a-2 x 指針 4 る。 のの 3a-2 4 を示す点の位置を考え、問題の条 件を満たす範囲を求める ▼自然数=正の整数 (1) 不等式から 3x<12 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 左 3a-2 (2)x< 4 を満たすxの最大の整数値が5であるから 1 2 3 4 * 解答 5 <- 3a-2 4 ≤6.. ...... (*) ara (st 4 3a-2=5のとき,不等 (0< 式は x<5 で,条件を満 3a-2 5- ・から 20<3a-2 4 たさない。J って、22 3a-2 4 よって a> ① =6のとき、不等 e>x 3 3a-2 8>* 式はx<6で,条件を満 ≦6から3a-2≦24 たす。 4 TO ① 26 よって as ② (S) 3 ① ② の共通範囲を求めて 22 51 3a-2 6 x 26 各辺に4を掛けて 20<3a-2≦24 各辺に2を加えて 22<3a≦26 22 26 各辺を3で割って <a≤ 3 3 注意 (*)は,次のようにして解いてもよい。 表す図 3 <a≤ 3 OSI ① わる。 検討 (22) >I 3 23 26 a

回答募集中 回答数: 0
数学 高校生

数列です。この問題のカッコ2って階差数列で解いてもいいのでしょうか。もし解いていい場合、階差数列であるということが問題文に書いていないのに使っても問題ないのでしょうか、回答お願いします

j≦n, k≦nとして,次の ● 7 数表 正方形の縦横をそれぞれn等分して,n2個の小正方形を作り,小正方 形のそれぞれに1からn2 までの数を右図のように順に記入してゆく. 1 4 6 16 2 3 8 8 15 |にあてはまる数または式を答えよ. 5 6 7 14 (1) 1番上の行の左からん番目にある数はア. 10 11 12 13 (2) 上からj番目の行の左端にある数はイ. : : (3) 上から番目の行の, 左からん番目にある数は, 1≦k≦ウ のとき エ ウ <k≦nのときオ. (4) 上からj番目の行のn個の数の和から最上行のn個の数の和を引くと, となる. ( 京都薬大) キリのいい形で 数を一定の規則によって並べたものを扱う問題は, キリのいい形に着目し, 解決 の糸口をつかもう. 上の例で言えば, 正方形に着目する. 解答 番目の行の左側からん番目にある数を (j, k) とする.例えば, (2,3)=8 (1) (1,k)は図1の正方形に入っている最後の数で, ア= (1, k)=k2 (2)1つ手前は (1, j-1) だから,イ= (j, 1) =(1, j-1)+1=(j-1)2+1 (3) 図2,図3より, ウ=j 図 1 図2より, 1≦k≦jのとき, (j,k)=(j,1)+k-1=(j-1)2+k(=エ) 図3より, j<k≦nのとき, (j,k)=(1, k)-(j-1)=k-j+1(=オ) (4) [引いてから和をとる方が少しラク] (1),(3)より, (j,k) - (1,k)は, (i) 1≦k≦jのとき,エーア=(j-1)+k-k2 (i) j+1≦k≦nのとき, オーア=-j+1 よって、 求める 「和の差」 は, n-jコ n \ { ( i −1 )² + k − k ² } + " (−j+1) [~m= ( − j +.1) + ··· + ( − j+1)] 1.......ろ 図 2 1 kj-lj ウ j-1 2 (-1)² 図 3 1........ S 個

解決済み 回答数: 1