学年

教科

質問の種類

数学 高校生

赤線で囲った部分は要するに何を言ってるんですか? それと、赤線で囲ったところの上の式変形、どういう思考回路で出てくるんですか?

た接線 基本 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 x2 田線の接線 q² + y² (②2) 曲線x=et, y=et のt=1に対応する点 Q ttel, a>0, b>0 基本 81 める。 7/2 20 ((1) 楕円 指針 「解答」 (1) 両辺をxで微分し,y'′ を求める。 -=1上の点P(x1, y1) 62 2²2 +22²2 62 接線の傾き=微分係数 まず, 接線の傾きを求める。 dy dt dy dx dx dt y-Vi=- よって =1の両辺をxについて微分すると 2x 2y ゆえに,y=0のときy= 62x a² 62 a'y よって,点Pにおける接線の方程式は,y≠0 のとき 62x1 a²y₁ 点Pは楕円上の点であるから (2) th + •y'=0 dy dx = (2) dy dt dx dt X1X (x-x1) すなわち 2 a² 62 a² 62 y=0のとき, 接線の方程式は y=0のとき, x1 = ±α であり, 接線の方程式は これは ① で x = ±α, y=0 とすると得られる。 したがって 求める接線の方程式は (2) dx = e², dy = =et, dy=e-t²(-2t)=-2te-t² dt dt -2te-t² et + = + X₁² y₁² 2 q² 62 2 yiy x₁² y₁² + =1 X1X Viy 2 62 + t=1のとき de, 1/2) = -2/2 Q(e, dy == dx e² したがって 求める接線の方程式は -=1 [(2) 類 東京理科大 ] /p.142 基本事項 2. 基本 81 x1x yiy a² =-2te-t²-t + =1 62 を利用。 1 x=±α 2 ext y-1---²/(x-e) tah5 y=- すなわち 3 陰関数の導関数につい ては, p.136 を参照。 ただし, a>0 5 両辺に12/12 を掛ける。 傾き b²x₁ a²y₁ -a x=-a yA 3e10 | 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 83 _ (1) 双曲線x2-y2 = d² 上の点P(x1, y1) 0 2 YA b p.137 参照。 2539 O -b P(x1,y1) a x=a -y=-2²/x+³ Q(t=1) 153 EY70 4章 2接線と法線

回答募集中 回答数: 0
数学 高校生

これ赤線部分って青チャートでは省略されてて、 どういう要領で書くものなんですかね

証 109 定点からの距離の比が一定な点の軌跡 2点A(-4, 0, B2, 0) からの距離の比が2:1である点の軌跡を求めよ。 p.174 基本事項 ■ 2 指針 例題 定点A(-4, 0), B(2,0 ) 条件を満たす任意の点を P(x,y) とすると、条件は このままでは扱いにくいから, a>0,6>0のとき,a=b⇔a=b² の関係を用いて AP:BP=2:1 AP:BP=2:1⇔AP=2BP⇔AP'=4BP として扱う。 これを x, の式で表すと, 軌跡が得られる。 軌跡である図形 F が求められたら, 図形F上の任意の点Pは,条件を満たすことを確 認する。 CHART 条件を満たす点をP(x, y) とする AP: BP=2:1 AP=2BP AP2=4BP2 よって すなわち したがって 軌跡 軌跡上の動点 (x,y) の関係式を導く (x+4)²+y²=4{(x−2)²+y²} x2+y²-8x=0 整理して ゆえに すなわち x2-8x+42+y2=42 (x-4)2+y2=42, y4 2 B 2 P(x,y) 18 x 175 <AP > 0, BP > 0 である から平方しても同値。 よって, 条件を満たす点は,円 ①上にある。 逆に、円①上の任意の点は,条件を満たす。 したがって、求める軌跡は A 中心が点 (4,0), 半径が40円・ 注意 「軌跡の方程式を求めよ」 なら, 答えは ① のままでよ いが、 「軌跡を求めよ」 なので、 Aのように、答えに図 形の形を示す。 2 3章 <x,yの式で表す。 AP2={x-(-4)}+(y-0)² BP2=(x-2)+(y-0) 2 1989軌跡と方程式 ①の式を導くまでの式 変形は,同値変形。 円(x-4)2+y²=4を答 えとしてもよい。 アポロニウスの円 上の例題の軌跡の円は, 線分ABを2:1に内分する点(0, 0), 外分する点 (8, 0) を の両端とする円である。 の距離の比が min(m>0,n>0, m≠n) である点の軌 である。こ

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり再] [L] 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1) tan0 だか これをCの方程式に代入すると 2x²-2(x-1)*tan²0=1 tandt (t = 0, ±1) とおいて整理して in 2(1-1²)x²+4tx=(1+2+³)=0 ①の判別式をDとすると D -=(21²)²-2(1-t²){−(1+2t²)} = 2(1+t²) >0 4 よって, ① は異なる2つの実数解をもつから 直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から a+β=- aß=-- 2t² 1-² この傾きはf(=tan) であるから」 mimimi PQ2=(1+t)(a-B)^²=(1+t){(α+B)-4aB} =20 22 =(1+(-12 ) +4.1+24 1+tan²0 \2 1-tan²0 2 cos2 20 (3) (2) から RS'= 核心は 1+2t² 2(1-1²) なす角か = 2 ココ!- Ò cos²20+ sin 20 PQ2 ++ + 2 2(1-t)] cos20 + sin20 \2 cos²0-sin³0 2 = cos³2 (0+) sin ²20 T ・① 2(1+1²)² (1-1²)² =1/1/2=(一定)(証終) 第10章 式と曲線 曲 第33匹 解答は158ページ 97 Lv.★★★ C を双曲線 2x2-2y2=1とする。 l, mを点 (1, 0) を通り, x軸とそれ れ0.0 +4の角をなす2直線とする。 ここではの整数倍でないとす (1) 直線1は双曲線 C と相異なる2点PQで交わることを示せ。 (2) PQ2, 0 を用いて表せ。 (3) 直線と曲線Cの交点をR, Sとするとき, (火) らない定数となることを示せ。 PO² + +42/ RS2 は0に (筑波) 98 Lv.★★★ 解答は159ページ 楕円+y^2=1上の点をP(3cosa, sina) (Osas)とし、原点O 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき、次の各問に よ ー (1) 線分 OP の長さが 3 以上になるの範囲を求めよ。 √5 (2) α-0の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 +10=1 -=1 (a>b>0)について, 以下の問いに答えよ (1) x座標が小さい方の焦点Fを極とし, F からx軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。また、点Fを通る楕円の弦を AB とし,線分 FA および FB の長さをそれぞれ, B とするとき 11 の値は定数となること 群馬大 解答は160ページ .....................

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり用 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1)tan0だか ら,これをCの方程式に代入すると 2x²-2(x-1)² tan²0 = 1 tan Qt (t = 0, ±1) とおいて整理して 2(1-t2)x2+4t2x- (1+2t) = 0 ①の判別式をDとすると D= (2+²)²2-2 (1-t²){-(1 + 2t²)} = 2(1 + t²) > 0 4 21² aβ= 1-t². この傾きは t(=tan) であるから」 よって, ① は異なる2つの実数解をもつから、直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から 1+2t2 α+β=- 2(1-t²) _PQ2=(1+t)(a-B)2=(1+t){(a+β)²-4aß} 2(1-t)] = 2 (1+tan ²)² = 2(cos²0+ sin²0 ² \2 1-tan²0 A-sin20 2 cos220 22 \2 = 0+1"){(-2+²)* +4. 21+2²}-20+1² 答 G (3) (2)から, RS' = 回核心は ココ! なす角 2 cos¹2(0+5)= 4 1 1 cos220 PQ+= cos 20+ sin 20 PQ² RS2 2 2 11 2 sin ²20 0 なので G 1/12 (一定)(証終 F F H 第10章 式と曲線 第33回 97 Lv.★★) 解答は158ページ C を双曲線 2x2-2y2=1とする。 l,mを点 (10) を通り, x軸とそれ れ 0.0+匹の角をなす2直線とする。 ここで0はの整数倍でないとす CLOS 4 (1) 直線は双曲線 C と相異なる2点P, Qで交わることを示せ。 (2) PQ³ 2. を用いて表せ。 10 AN (3) 直線と曲線Cの交点をRSとするとき, らない定数となることを示せ。 98 Lv.★★★ 楕円 2 x² 曲 (1) 線分 OP の長さが 3 √5 (2) | α-0 の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 解答は159ページ +y2=1上の点をP (3cosα, sinα) (0≦a≦ 2) (0≦a≦△)とし、原点O 32 + 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき,次の各問に答 えよ。 XORA y² 62 は42, + ・は0に (筑波) PQ² RS² の長さをそれぞれA, YB とするとき, 以上になる0の範囲を求めよ。 (群馬大 解答は160ページ・ a² =1 (a>b>0)について,以下の問いに答えよ (1)x座標が小さい方の焦点Fを極とし, F から x軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。 また, 点Fを通る楕円の弦を AB とし,線分 FAおよび FB 1 1 + rB の値は定数となること

回答募集中 回答数: 0