学年

教科

質問の種類

数学 高校生

微分に着いてです。総合問題30の方で質問があるのですが、類題では(画像3枚目)x=0になる場合も考えているのにこの問題では考えていないのはなぜですか...?教えて頂きたいです。

用いて表す。 総合 実数a, b に対し, 関数f(x)=x^+2ax3+(a2+1)x2-a3+α+bがただ1つの極値をもち, その 30 極値が0以上になるとき, a, b の満たす条件を求めよ。 f'(x)=4x3+6ax2+2(a2+1)x=2x(2x2+3ax+a2+1) [類 横浜国大] 本冊 数学Ⅱ 例題 218 まず、微分する。 f'(x) =0 とすると x=0, 2x2+3ax+a2+1=0 xの2次方程式 2x2+3ax+a2+1=0 ...... ①の判別式をDと ←① の実数解の個数が するとD=(3a)2-4・2・(a+1)=α²-8=(a+2√2) (α-2√2) X [1] D>0 すなわち a< 2√22√2 <a のとき カギとなる。それはD の符号によって変わって くるから,D>0,D=0, α+1>0より,x=0は①の解ではないから,①はx=0以D<0 に分ける。 外の異なる2つの実数解をもつ。 ゆえに、f'(x) = 0 は異なる3つの実数解をもつ。 この3つの解をα, B, y (a<B<y) とすると, f (x) の増減 x 表は次のようになる。 10 a B r ... ←本冊 p.347 の 参考 参 0 +0 0 + 照。 極大 \ 極小 > f'(x) f(x) 極小 よって, f(x) は極値を3つもつから、不適。 ◯[2] D0 すなわち a=±2√2 のとき ①は重解 x=- 2-2 3 3a == -α をもち 2x2+3ax+a2+1≧0 4 3 ←等号はx=- aのと き成り立つ。 (i) a=2√2のとき 3√√2 f'(x) = 0 は x=0, を解にもつから, 3√√2 XC 0 2 -2 f(x) の増減表は右のようになる。 f'(x) - 20 + 0 + よって, f(x) は x=0で極小となり, 極値0- を1つだけもつから,適する。 f(x) 極小 f √(3√2) (ii) a=2√2のとき f'(x)=0 は x=- 3√√2 2 0を解にもつか 3√√2 XC 0 ら,f(x) の増減表は右のようになる。 2 値を1つだけもつから,適する。 よって, f(x) は x=0で極小となり,極 f'(x) - 0 f(x) (3√2 2 20 ▼ 極小 > : +

解決済み 回答数: 1
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
化学 高校生

この問題のオについてです。 水の一部が液体として存在するということは水蒸気も存在していることになると思いますが、体積を求める時に窒素しか考えていないのは何故ですか?

総合問題 5.0 69. 蒸気圧 文中の (ア) ~ (オ)に当てはまる値を有 4.5 4.0 効数字2桁で求めよ。 また, 《A》に当てはまる最も 適切な温度範囲を ① ~ ⑤ から選べ。 ただし, 気体は すべて理想気体, 液体の体積および液体に対する気 2.74 体の溶解は無視できるものとする。 3.5 3.0 2.5 2.0 1.5 1.0 体積と圧力と温度を変えることが可能な密閉容器 に窒素(V) molと水(ゾイ) mol を封入し、 温 度を27℃,圧力を 5.00 × 104 Pa に保ったところ、体 積は10L になった。 このとき, 容器内には液体の 水が 0.504g 残っていた。 温度27℃のまま、 体積を 20L にすると,気体の全圧は(↓ゥ)Pa となった。 次に、体積を20Lに固定したまま。 温度を27℃から 0.5 0.360+ 0 温度 [℃] 67℃までゆっくり上げていったところ,途中ですべての水が水蒸気になった。その温度 は《A》の範囲にある。 さらに, 温度を67℃に保ったまま, 圧力を 8.00×104 Paにし たところ、体積は (エ)Lになった。その後,温度を67℃に保ったまま, 容器内の圧 力を1.60×105Paに調整したところ,体積は (オ)Lになった。 ① 27~32℃ 2 32-37°C ( ③ 37~42℃ ④ 42~47℃ ⑤ 47~52℃ (21 青山学院大改) 70.混合気体と圧力図に示すように、ピス F(x 10¹Pa)- 10 20 730 40 50 27 ■■ 60 770 80 67 論述 71 ガリ ガリ では, 子対を 合で結 単位格 この (イ は液 点が3 も広 (1) 原 (2) IR 子門 72. 気 あれ Paを 操作

解決済み 回答数: 1
数学 高校生

積分です。 問題ではこのように曲線−接線をしているのですが なぜ接線−曲線だとはならないんですか? 解説お願いします🤲🏻🙇‍♀️

124 面積(5) ~微分・積分のまとめ~ 座標平面上に曲線 C:y=x²-4x+8がある. (1) C上の点A (1, 5) における接線の方程式を求めよ . (2) Cと1で囲まれる部分の面積Sを求めよ. 解答 (1) f(x)=x²-4x+8 とすると, f'(x)=3x2-4 である. 点A(1,5)における接線は,f'(1)=-1より, y-5=(-1)(x-1) .. y=-x+6 (2) Cとlの共有点の座標は,連立方程式 |y=x²-4x+8 ...(1) |y=-x+6 の解である.②を①に代入すると x3-4x+8=-x+6 x3-3x+2=0 (x+2)(x-1)2=0 +O+BA-50 4 = S'₁(x²³-3x+2)dx= [ 1x¹__3x²+2x 3 5 (−2) (城西大) 35-45 2<x<1において,て 線分ABを2:3に 635 *=-2, 1 x+2>0, (x-1)2>0であるから, よって, Cとは右の図のようになっている. (x+2)(x-1)^>0である. 求める面積をSとすると, つまり, &&S=S₁₂1(x³-4x+8)−(−x+6) | dx A 0 1 TERASA 044- ] ₁ 3 =(1/12/+2)-1/12/16-12/24+2(-2)} = 0 - (-6)= 27 ·16· 4 x²-3x+2>0 A x-4x+8>-x+6 ると、 となるから, y=x4x+8は, y=-x+6より上にある 解説講義 ここまで本書を使ってがんばってきた皆さんには,本番で確実に得点してほしい総合問題 である. 本間で再確認すべき内容は次の3つである. 3次式の積分になるので、計算ミスに も十分に注意しよう. (i) 接線は110 で勉強したように y-f (t)=f'(t) (x-t) を用いる の曲線(あるいは直線) の共有点は連立方程式の解を求めればよい

解決済み 回答数: 1