学年

教科

質問の種類

数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

175.2 訂正後の記述に問題はないですかね??

基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, log3561 (2) 2, log49, log25 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき 0<p<g⇔logp<logag 対 大小一致 0<a<1のとき 0<p<glogp>log.g -- 解答 せ。説明 大小反対 (不等号の向きが変わる) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し、底を3とする対数で表す。 (2 を底を2とする対数で表す。 2と1049 (3) (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 件に関する箇所を比べてた。 HUTE 【CHART 対数の大小 底をそろえて 真数を比較 (3) 4数を正の数と負の数に分けてから比較する。 また, 10g2, 10gs2の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (2) 2210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから (1) 1.5=2=log:3=log, 3} # (3³)²=3¹=27>5² また 底3は1より大きく35であるからな 10g33 >10g35) したがって 2 1.5 >log35 同値では10g23210g23 log4 9=- log22² ......... 1 logs2= log52= log23' 10g25 1 <3 < 5 であるから 0<log23 <log25 recept Soffol よって 0< すなわち したがって log25 log2 3 10gage 1 log.pt log23 <log24<log25 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1であるから logo.53<logo.52<0ft で,底2は1より大きく, 式しか定 次の各組の数の大小を不等号を用いて表せ。 (?) 19go.33,10go.35 YA a>1 0/p 00000 - ***** 0<log52<log32 logo.53 <logo.52<logs2<logs2で成り立つ log, y=logaxのグラフ gx y 0<a<1 log.p op. logag 1 g 底はそろえよ <A> 0, B>0ならば A>B⇒A¹>B² 底の変換公式。 a142ターのように アート 不等号の向きが変わる。 指針のy=10gaxのグラフ から, α>1のとき 0<x<1⇔10gax<0 x>1⇔10gax>0 Job 0 <a <1のとき 0<x<1⇔10gax > 0 x>1⇔10gax < 0 x Op.293 EX113 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

なんで青線の①の式から辺BCが2:3に内分すると分かったのか謎だし、線分ADを5:6に内分すると言うのもどう考えたら出るのか全くわからないので手がつきません😭😭😭😭🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️教えてください🙏

基本例題 22 分点に関するベクトルの等式と三角形の面積比 ①①①①① △ABCの内部に点Pがあり, 6PÂ +3P+2PC = 0 を満たしている。 (1) 点Pはどのような位置にあるか。 (2) APAB, APBC, APCA の面積の比を求めよ。 解答 (1) 等式を変形すると 指針▷ (1) αPA+6PB+cPC = の問題点Aに関する位置ベクトルAP, AB, AC の式に 直し、AP=k nAB+mAC m+n の形を導く。 A (2) 三角形の面積比 等高な底辺の比②2 等底なら高さの比を利用して,各 三角形と△ABCとの面積比を求める。その際, (1) の結果も利用。 よって -6AP+3(AB-AP) +2(AC-AP)=0 11AP=3AB+2AC ① ゆえに ゆえに AP= 5,3AB+2AC 5 辺BCを2:3に内分する点をDと すると AP-AD したがって, 辺BCを2:3に内分 する点をDとすると, 点Pは線分 AD を 56 に内分する位 置にある。 (2) △ABCの面積をSとすると △PAB= 51.4 △ABD= 6 △PBC= …AABC= 11 APCA-A -.AACD= B 6 53 11 5 D n △ABC=11S •AABC=ns APAB: APBC: APCA = S: S: S p.413 基本事項 [②2] [類 名古屋市大] 基本58 C =2:6:3 差の形に分割。 AB, AC の数に注目す ると,線分 BC の内分点の 3AB+2AC 2+3 位置ベクトル の形に変形することを思い つく。 【等高S,S, S,S,- [参考] 一般に, △ABCと点Pに対し, IPA+mPB+nPC=0 を満たす正の数m,nが存在す るとき,次のことが成り立つ。 (1) 点Pは△ABCの内部にある。 (2) APBC: APCA: APAB=1:m:n

回答募集中 回答数: 0