学年

教科

質問の種類

数学 高校生

(2)の問題なんですけど、2枚目に撮ったところが分からなくて…私は解説の横に書いた手書きの図なんですけど、こうなると思って計算したら間違えてしまいました。なぜ3、5、aがあの場所になるのか解説してくだされば幸いです、宜しくお願い致します🙇

(例題79) (1) 次の三角形は鋭角三角形, 直角三角形, 鈍角三角形のいずれか a=3,b=10,c=8 3辺の長さが, 3, 5, a a この値の範囲を定めよ。 の三角形が鋭角三角形となるように正の数 E ポイント (1) 最大角は最大辺の対角( (2)鋭角三角形とは,三角形が成立し, かつ鋭角三角形 と考えます。鋭角三角形になる条件は, Aが鋭角かつBが鋭角 wwwww パターン(74) だからBになります。 三角形が成立しなければ 鋭角条件を満たしても 意味ないよね と考えます。 ポイント B C この三角形では,最大角はAかBかわからない。 Cだけはありえない 解答 ∴AとBの両方が鋭角になれば鋭角三角形!! (1)最大角はBである。 よって 82+32-102__27 cosB= 2.8.3 (2) 三角形の成立条件より, より、鈍角三角形。 48 負 [3+5>a ••• ① 3辺を図のようにおく 3+α> 5 ... ② C la+5>3 ...③ B (5) また,鋭角三角形になるための条件はa>0より 4 0<a<v34 (3) COSA= 3²+5²-a² 2.3.5 lcosB= 32+α²-52 >034-a>0 ...④ ->0a²-16>0 2.3.a これより,4<a<√34 ① (2) -202 4 √34 8 a >0より a>4 パターン79 鋭角三角形, 鈍角三角形 171

未解決 回答数: 2
数学 高校生

2番の問題でなぜタンジェントを求めてるんですか?

258 基本例 例題 157 三角形の辺と角の大小 : 000 △ABCにおいて, sin Asin B:sinC=√7:√31が成り立つとき △ABCの内角のうち、最も大きい角の大きさを求めよ。 △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 三角 p.248 基本事項園 の1つ 指針 (1) 正弦定理より, α: b:c=sinA: sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 基本例 1 AB=2, BC = (1)xのとり (2) AABC, 三角形の辺と角の大小関係より, 最大辺の対角が最大角 a<b⇔ A<B a=b A=B a>b⇔A>B であるから、3辺の比に注目し, 余弦定理を利用。 指針 (2) まず, 2番目に大きい角のcos を求め, 関係式 1+tan20=- 三角形の2辺の大小関係は,その対角の大小関係に一致する。) B (1) 三 (2) ここ 角 1 COS20 を利用。 例 C b により a (1) 正弦定理 解答 sin B sin C sin A a:b:c=sinA: sin B: sin C これと与えられた等式から よって、 ある正の数んを用いて ...... (*) 01- ak b√√3kk cos A= 2.√3k.k よって、 最大の角の大きさは 大の色である。 余弦定理により (√3k)2+k-√7k)2 と表される。ゆえに、が最大の辺であるから,4が最k を正の数として a:b:c=√7:13:1 sin A sin B ||a:b=sinA b C a b sin B SinC から b:c=sinB:si 合わせると(*)とい 解答 (1) よ (2) [ -008-288-CLA b C √3 1 とおくと -3k2 √3 2√3k2 2 A=150° (2)(1) から2番目に大きい角はBである。 k2+√7k2-(√3k)2 Fa=√7k, b=√1 c=k= abcからA よって,Aが最大の ある。 余弦定理により 203 A 5k² cos B= 2.k.√7k 275 k √3 2√7 01 B √7k 1 等式 1+tan2 B= から cos2 B tan2B= cos² B 5 1=(2/7)-1 28 001- 320- i-1= 25 25 A> 90° より B <90°であるから 5 3 V 25 tan B> 0 したがって tan B= 5 練習 △ABCにおいて 8 7 ② 157 sin A sin Basin C が成り立つとき √√3 = ■三角比の相互関係。 (p.238 例題 144 参 DARD (1)の結果を利用。 △ABC は鈍角三角形 (1)△ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2)△ABCの内角のうち、最も小さい角の正接を求めよ。 [類 愛知工 | 練習 ③ 15

未解決 回答数: 0
数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1