学年

教科

質問の種類

英語 高校生

合ってるか見てもらいたいです! 大門1 (1)where (2)why (3)when (4)how (5)where 大門2 (1)That is why she has many friends. (2)This is where I found your wallet... 続きを読む

各文の( )内のうち,適当なほうを選びなさい. (2) Tell me the reason (how/why) you need so much money. (1) The town (which/where) grew up is very small. (3) I remember the day (when /where) my brother was born. (4) This is (what /how) she solved the difficult problem. (5) Yokohama is the place (where/ which) I like most. ②各文の( )内の語を意味が通るように並べかえなさい. eri edy joy evip # (1) Hina is kind to everyone. That (has, why, is, she) many friends. Hina is kind to everyone. That been doy la (2) This (I, is, found, where) your wallet. This you. (2) (3) April (we, is, begin, when) our school year. 33653671 169191 theo EBST-1 10 scho April just came home, ( bobbitw ★3 各組の文がほぼ同じ意味になるように,( )内に適語を入れなさいollot and My cousin went to Vietnam, and there he found a job. axlil voy am 9v6sl vom (1) My cousin went to Vietnam, (ldn't fix ) (computer) found a job. I just came home, and then the telephone rang. {} bitv 92000 many frie E OSSER 5 日本語に合うように( )内に適語を入れなさい. (1) 2018年は彼が初めて日本を訪れた年でした. 2018 was the () ( ) ( (2) 彼女が教師になった理由を知っていますか. Do you know the ( ) ( * (3) 私たちは図書館へ行き、そこでサリーに会った。 We went to the library, ( ) ( nisht edt no 79d of ixen tre (3) That's how she started an online store. like they, wherever) 197919dv evendw ailand 8 your wallet. our school year. 10 9 (383) rang. MAG 4 各文を日本語で表しなさい. BARSAESOUROT JA O D* (1) There are some countries where it never snows.mite ald, gob T. (1) sainidt 976 UOV V62 062 DOY (S) hoendo (2) Tuesday is the day when we have seven lessons. SO THOD 10 *(4) Explain the reason you have chosen this topic.BOX0* 01 990.12, TYSN it easque devOSE (1) *(5) They moved to Nagoya, where they lived for ten years. PIREL labe srle ,insw sila nav ) (our) Japan for the first time. (busty you their I ) (real) ( ) (simuld ) Sally. ) a teacher? 1 ah a blon vavswoll (2)

回答募集中 回答数: 0
数学 高校生

63.3 このような解法(記述)でも問題ないですよね??

478 00000 基本例題 63 2直線の交点の位置ベクトル 四面体OABCの辺OAの中点をP、辺BCを2:1に内分する点をQ、辺OCを 1:3に内分する点を R,辺 AB を 1:6 に内分する点をSとする。OA=d. OB=5, OC = c とすると (1) PQ を で表せ。 (2) RSをa, , で表せ。 33.197 (3) 直線 PQ と直線 RSは交わり, その交点をTとするとき, OT をもって 表せ。 解答 ! 指針 (1), (2) PQ=OQ-OP, RS=OS OR (差による分割) (fl)=90 (3) 平面の場合 (p.418 基本例題24) と同様に,一-04 交点の位置ベクトル 2通りに表し係数 La 1.6+2c 2+1 (1) PQ=OQ-OP= (2) RS=OS-OR= (3) 直線 PQ と直線RS の交点をTとする。 Tは直線PQ上にあるから よって, (1) から 6a+1.6 1+6 に沿って考える。 点 T は直線PQ, RS上にあるから PT=uPQ (u は実数), RT=RS ( は実数)として, Or をa, b,cで2通りに表し, 係数を比較する。 1 1/² à = − 1⁄² ã + ²/² b + ² / č - 3 T は直線 RS 上にあるから ゆえに,(2) から OT-OP+uPQ=(1-u)a+ub + u..... 2 3 → → P, 1 c = 4 a + 1 6-1 c 16-18AO RIST C 4 7 0x0 PT=uPQ (u は実数) 2 D RT=vRS(v は実数) b, c REMI OT=OR+vRS=/va+v6+ 1/ (1-v) č. 第1式と第2式から um/13. o=17 15 U=. v= これは第3式を満たす。 よって, ① から OT=ã+ [類 岩手大] - 15 4点O,A,B,Cは同じ平面上にないから,①,②より 6 1 1 2 1/(1-0)- 70 = 70, 3/4= 4(1-0) V, u= AO-HO 2 ·6+² / - c 15 DER AKY IS 0 $6. 3)=(1-€ I+E+S)=5A HO HA A HA A B R AN 基本24 の断りは重要。 P 2

回答募集中 回答数: 0
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0