学年

教科

質問の種類

英語 高校生

7番がわかりません、、二枚目の写真から、accustomedの後ろはto doingの形だから4番かなと思いましたがbe accustomedではないよな、、?って思って確信が持てなかったので、、😭😭ヨーコはこの大学で勉強することにすぐ慣れるだろうって訳でしょうか、、?? ... 続きを読む

There is no (use, point, sence, good)(in) doing 1 will そこに立っていても意味がない 5. There is no ( ) in standing here. ② point で~してもむだであるになるから。 ③goal ④ choice 公はこのコンピュータを使うことに慣れてない 〈 名古屋学院大 〉 ③ used 6. Tom isn't used to ( ) this computer. be (used, accustomed) to A/doing で ② using ① use ?□ 7. Yoko will soon get accustomed ( ① study ② studying が 携帯電話を使う 8. Some parents object ( Aに~することになれているになるから ④ be using ) at this university. 空中文美 ③ to study smosley ④ to studying 〈関西外国語大〉 Jnio 91019 〈中部大〉 children use a mobile phone. object to (A) doing ①to letting molded to let pr お金を節約することになると、 Aに~することに反対する ③ letting 2921 bn ④ to have let 摂南大 が、買い物にここらへんではいちばんの店だ 9. When it comes ( ) saving money, ABC store is the best place to shop around here. ④ ①①to ② from ③ in 今夜、私の家で何かたべませんか Hot dator ~することになると When it comes to doing < 杏林大〉 ~しませんか ① eat busine ② to eat for gnitys ③ eating ④④ to eating in gris ( <玉川大〉 10. What would you say ( )something at my place tonight? What would you say to doing

解決済み 回答数: 1
数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

解決済み 回答数: 1
数学 高校生

上の例題で最後に商を求めているんですが、したの演習56でa,b,cは出たんですけど、商ってどうやって出すんですか?分かりにくくてごめんなさい!💦

第1章 式と証明 演習問題 発展 例題 1 係数に文字を含む多項式の割り算 αは定数とする。xについての多項式+ax²+4x+5 をx-x-2で割る と、余りが3-1となるように,αの値を定めよ。 また, そのときの商 を求めよ。 考え方 商をbx+c とおいて,等式A=BQ+Rの形に表し, 両辺の同じ次数の頃の係 数を比較してAを求める。 解答は次式になるからbx+cとおくと x+ax²+4x+5=(x-x-2) (bx+c)+3x-1 これがxについての恒等式である。 右辺をxについて整理すると x+ax²+4x+5=bx+(-b+c)x+(-26-c+3)x+(-2c-1) 両辺の同じ次数の項の係数を比較して 演習 1=b, a=-b+c, 4=-2b-c+3, これを解いて a=-4,6=1,c=-3 したがって,商は x-3 5=-2c-1 ▼p.10 POINT5 A=BQ+R. ▼1 = b から b=1 5=-2c-1からc=-3 これらは4=-2b-c+3 を満たすから, a=-b+c に代入して a=-4 □56aは定数とする。についての多項式 2x+ax²+ 2x +4 をx-2x+1で割ると、余りが2x+3 となるように,a の値を定めよ。 また, そのときの商を求めよ。 商は1次式だからbx+cとおくと、 2x+ax+2x+4=(x²-2x+1)(bx+c)+2x+3 これが火についての恒等式である。 右辺をXについて整理すると、1 2×3+ax²+2x+4=bx3+Cx=2bx²-2x+bx+c+2x+3 b+(-2b+c)x+(b-2C+2)x+(col 両辺の同じ次数の項の係数を比較して 2=ba=-2b+c2=b-2C+2,4=C+3 24 2-2C+2=2-4 -2C-2 C=1 a=-2-2 +1 =-3 a=-3,b=2,c=1. 発目 例

解決済み 回答数: 1
生物 高校生

問5について質問です。 右の解説を見ても、実験1、2、3の関係性が分からなかったので、教えていただきたいです🙇🏻‍♀️🙏🏻

問題 8. 遺伝子の 34 遺伝子の本体 肺炎球菌には、外側に被膜をもつS型菌と, 被膜をもたないR型菌とが ある。この生物を用いて, グリフィスは,以下のような実験を行った。 実験I S型菌をネズミに注射したところ肺炎を起こしたが, R型菌を注射 しても肺炎を起こさなかった。 また, 加熱殺菌したS型菌をR型菌に混ぜ てからネズミに注射すると, ネズミは肺炎を起こした。 続いて、 エイブリーは、以下のような実験を行った。 実験2 S型菌をすりつぶした抽出液をR型菌の培地に加えると,R型菌の 中にS型菌が出現した。 また, S型菌の抽出液にタンパク質分解酵素を作 用させ,これをR菌型の培地に加えたところ, S型菌が出現した。しかし、 S型菌の抽出液に(a) ある酵素を作用させ、これをR型菌の培地に加えた場 合, S型菌は出現しなかった。 また,ハーシーとチェイスは、バクテリオファージのT2 ファージを用い て、以下のような実験を行った。 実験3T2 ファージのもつ (b) DNAとタンパク質に目印をつけて,大腸菌に 感染させたときに,そのどちらが細胞内に入るかを調べた結果,大腸菌に 入る物質は DNA だけであることを明らかにした。 問1 実験」において, 明確な結論を得るためにグリフィスは本文中に記述 していない対照実験を行っている。 その実験と結果をそれぞれ記せ。 ① アミラーゼ 問2 下線部(a)について, 最も適当な酵素を次から1つ選べ。 ② DNAリガーゼ ⑤ RNA 分解酵素 ③ DNAポリメラーゼ 6 ⑥ トリプシン ④ DNA 分解酵素 問3 実験や実験2で示されたような, 遺伝的性質の変化を何というか。 問4 下線部(b)の目印には、DNAとタンパク質を区別できる元素の放射性 同位体が用いられた。(I) DNAに含まれてタンパク質に含まれない元素 と, (2) タンパク質に含まれてDNAには含まれない元素をそれぞれ元素 記号を用いて記せ。 問5 実験1~3の結果より導かれる, 最も重要な結論を20字以内で記せ。 という ために 2.3 を取り ら を の 10-

未解決 回答数: 0