学年

教科

質問の種類

英語 高校生

15年の内で私が京都を訪れる最初の時だという文には完了が使えるのに15年の内で初めて京都を訪れているという文には完了系が使えないのですか?違いが分からないので教えて頂きたいです。よろしくお願いいたします。

・「京都は15年ぶりなんです」 悩む velmi hot Jaysb we] [txen Jasq] las ・「最後に京都を訪れて以来, 15年である」 ・It is(has been fifteen years • Fifteen years have passed since I • was last in • last visited文 Kyoto last came toldjob asrt noislugoqed 1.0.0 - 補語に ならない Mである!! . ・「これは15年のうちで私が京都を訪れる最初の時だ」 This is to the first time x for the first time . last stayed in NAT (NU) Oni (lo on | Kyoto the fifteen years ⚫ I've been to [in] I've visited [come to / stayed in]] aldiazoq ai I haven't visited 「私は15年間京都を訪れていなかった」 ・「これは15年のうちで京都への最初の旅行 [訪問] だ 」 = This is my first trip [visit] to Kyoto in for [in] fifteen years. for xie すべての中で fifteen years × time to come ← 〈This is one's first +行為名詞~〉を用いる! 「私は15年のうちで初めて京都を訪れている」 ertime seri Dangliest art ・I'm visiting [staying in] Kyoto 10 for the first x visit 性 | x I have been to [in] 1x first in fifteen years まず第一の意味 「行ってきたところだ」 という〈完了〉のニュアンスになってしまう!

回答募集中 回答数: 0
生物 高校生

生物 酵素の問題です。 表ではA~Hまでの試験管ごとの実験がまとまってありますが、どうして同じような組み合わせ(AとB、CとDなど)のものが2つずつあるのでしょうか? わざわざ分ける理由はあるのでしょうか、? ご回答よろしくお願いします🙇🏻‍♀️🙇🏻‍♀️

土物 既 15. カタラーゼの働き太郎くんは,カタラーゼが37℃,pH7で活 した。その後,酵素と無機触媒に対する温度やPHの影響を比較するため,8本の試験管 に5mLの3%過酸化水素水を入れ,下表のように条件を変えて気体発生のようすを確認 した。なお,表の温度は,試料が入った試験管を湯煎もしくは水冷して保った温度を示 している。各物質について,表中の+,-は添加の有無を意味し、添加した量は等しいも のとする。 以下の各問いに答えよ。 お 試験管 A B C D E F G H 温度 37°C 37°C 37°C 37°C 4°C 4°C 95°C 95°C pH 7 7 2 2 7 7 7 7 MnO2 + - + - + - + 肝臓片 - + - + + + 問1.表に示された実験だけでは,正しい結論を導くことができない。 どのような実験を 加える必要があるか。 問2.試験管 A,Bでは,短時間で同程度の気体の発生が認められた。 試験管C~Hのう ち,試験管 A,Bと同程度に気体が発生すると予想されるものをすべて答えよ。 問3. 酵素に最適温度や最適 pH が存在し, MnO2にはそれらがないことを考察するため には,どの試験管の結果を用いる必要があるか。 最適温度と最適 pH のそれぞれについ て, 考察に必要な試験管をすべて挙げよ。 RITA 8100010

回答募集中 回答数: 0
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0